Two Houston-area research projects out of local universities have created new, greener technologies. Photo courtesy of Rice University

Research, perhaps now more than ever, is crucial to expanding and growing innovation in Houston — and it's happening across the city right under our noses.

In InnovationMap's latest roundup of research news, two Houston institutions are working on clean energy innovation thanks to new technologies.

Rice University team develops seeds for growing solar energy collectors

Rice engineers discovered a self-assembly method for producing the films from "seeds," submicroscopic pieces of 2D crystals that serve as templates. Photo by Jeff Fitlow/Rice University

Man-made solar panels are continuing to be affixed to rooftops everywhere, but scientists at Rice University have just figured out a way to grow solar energy collectors in a more efficient way than ever before.

3D halide perovskite photovoltaic devices have been developed relatively reliably, but the Rice engineers have created microscopic seeds for growing 2D perovskite crystals that are both stable and highly efficient at harvesting electricity from sunlight, according to a release from Rice.

"We've come up with a method where you can really tailor the properties of the macroscopic films by first tailoring what you put into solution," said study co-author Aditya Mohite, an associate professor of chemical and biomolecular engineering and of materials science and nanoengineering at Rice. "You can arrive at something that is very homogeneous in its size and properties, and that leads to higher efficiency. We got almost state-of-the-art device efficiency for the 2D case of 17%, and that was without optimization. We think we can improve on that in several ways."

The study was published online in Advanced Materials by Mohite and his fellow chemical engineers from Rice's Brown School of Engineering. The seeds can be used to grow homogenous thin films that proved both efficient and reliable, a previously problematic combination for devices made from either 3D or 2D perovskites.

"Homogeneous films are expected to lead to optoelectronic devices with both high efficiency and technologically relevant stability," he says.

The process is more efficient and effective, as well as being cheaper. The Department of Energy's Office of Energy Efficiency and Renewable Energy and the Academic Institute of France and the Office of Naval Research supported the project.

Houston researchers are finding ways to improve EV batteries

Houston researchers are working on a new way to make electric vehicles more commercially viable with enhanced — and cheaper — batteries. Photo via uh.edu

Only a small fraction of vehicles on the road these days are electric — but that's going to change. It's projected that EVs will make up 30 percent of on-road vehicles in 2030. A team of scientists at the University of Houston are focusing on improving EV batteries — a major key in the commercialization of these greener vehicles.

The UH team — Yan Yao, Cullen Professor of electrical and computer engineering at the Cullen College of Engineering at the University of Houston, and UH post doctorate Jibo Zhang — are taking on this challenge with Rice University colleagues — Zhaoyang Chen, Fang Hao, Yanliang Liang of UH, Qing Ai, Tanguy Terlier, Hua Guo and Jun Lou.

In a recently published paper in Joule, the team demonstrated a two-fold improvement in energy density for organic-based, solid state lithium batteries by using a solvent-assisted process to alter the electrode microstructure, according to a news release from UH.

"We are developing low-cost, earth-abundant, cobalt-free organic-based cathode materials for a solid-state battery that will no longer require scarce transition metals found in mines," says Yao in the release. "This research is a step forward in increasing EV battery energy density using this more sustainable alternative."

Yao, who is also Principal Investigator with the Texas Center for Superconductivity at UH, explains that there is increasing concern about the supply chain of lithium-ion batteries in the United States.

"In this work, we show the possibility of building high energy-density lithium batteries by replacing transition metal-based cathodes with organic materials obtained from either an oil refinery or biorefinery, both of which the U.S. has the largest capacity in the world," he goes on to say.

The cost of EV batteries declined to nearly 10 percent of their original cost over the past decade, and innovation and research like this project are only going to make EVs more commercially viable. The research was funded by the US Department of Energy's Office of Energy Efficiency and Renewable Energy as part of the Battery 500 Consortium.

John Berger, CEO of Houston-based Sunnova, is this week's Houston Innovators Podcast guest. Courtesy of Sunnova

Houston solar energy exec shines light on company growth and IPO

HOUSTON INNOVATORS PODCAST EPISODE 15

It was all about the timing for John Berger, founder and CEO of Sunnova, a Houston-based residential solar energy company.

When he founded his company in 2012 in Houston, solar energy wasn't the trendy sustainability option it is today, but Berger saw the potential for technology within the industry. So, with a lot of perseverance and the right team behind him, he scaled Sunnova through nationwide expansion, billions of money raised, and a debut on the stock market last July — something that also happened with great timing.

About 72 hours after Sunnova went public last July, the Federal Reserve System announced it was going to cut rates. Additionally, Sunnova's IPO occurred ahead of WeWork's failed IPO.

"We went public in a market that still isn't back open again, I think, for IPOs," Berger says on this week's episode of the Houston Innovators Podcast. "We had pretty good timing when we went out the door."

However great the timing was, Sunnova's success is built on the hard work and skills of the company's employees, Berger explains on the podcast, and now running a public company requires a dynamic leader.

"I really look at myself and how I can change myself," Berger says. "I'm a different CEO today than I was 12 months ago, and hopefully I'll be a different CEO in 12 months, because the company demands it."

In the episode, Berger lifts the curtain on Sunnova's IPO, explains where he sees the solar energy industry headed, how battery storage technology has evolved, and why he's not worried about who ends up in the White House. Listen to the full episode below — or wherever you get your podcasts — and subscribe for weekly episodes.


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Axiom Space taps solar array developer for first space station module

space contract

Houston-based Axiom Space is making progress on developing its commercial space station.

The company awarded Florida-based Redwire Corporation a contract to develop and deliver roll-out solar array (ROSA) wings to power the Axiom Payload Power Thermal Module (AxPPTM), which will be the first module for the new space station.

AxPPTM will initially attach to the International Space Station. AxPPTM will later separate from the ISS and rendezvous with Axiom’s Habitat 1 (AxH1) on orbit. Eventually, an airlock, Habitat 2 (AxH2) and finally the Research and Manufacturing Facility (AxRMF) will be added to the first two Axiom modules.

AxPPTM is anticipated to launch toward the end of 2027. The two-module station (AxPPTM and AxH1) is expected to be operational as a free-flying station by 2028, and the full four-module station around 2030.

The modules will be integrated and assembled at Axiom Space’s Assembly and Integration facility, making them the first human-rated spacecraft built in Houston.

Redwire’s ROSA technology was originally developed for the ISS, according to Space News. It has yielded a 100 percent success rate on on-orbit performance. The technology has also been used on NASA’s Double Asteroid Redirection Test mission, the Maxar-built Power and Propulsion Element for the Artemis Lunar Gateway and Thales Alenia Space’s Space Inspire satellites.

“As a market leader for space power solutions, Redwire is proud to be selected as a strategic supplier to deliver ROSAs for Axiom Space’s first space station module,” Mike Gold, Redwire president of civil and international space, said in a news release. “As NASA and industry take the next steps to build out commercial space stations to maintain U.S. leadership in low-Earth orbit, Redwire continues to be the partner of choice, enabling critical capabilities to ensure on-orbit success.”

Greentown Houston to add new AI lab for energy startups

AI partnership

Greentown Labs has partnered with Shoreless to launch an AI lab within its Houston climatetech incubator.

"Climatetech and energy startups are transforming industries, and AI is a critical tool in that journey," Lawson Gow, Greentown's Head of Houston, said in a news release. "We're excited to bring this new offering to our entrepreneurs and corporate partners to enhance the way they think about reducing costs and emissions across the value chain."

Shoreless, a Houston-based company that enables AI adoption for enterprise systems, will support startups developing solutions for supply-chain optimization and decarbonization. They will offer Greentown members climate sprint sessions that will deliver AI-driven insights to assist companies in reducing Scope 3 emissions, driving new revenue streams and lowering expenses. Additionally, the lab will help companies test their ideas before attempting to scale them globally.

"The future of climatetech is intertwined with the future of AI," Ken Myers, Founder and CEO of Shoreless, said in a news release. "By launching this AI lab with Greentown Labs, we are creating a collaborative ecosystem where innovation can flourish. Our agentic AI is designed to help companies make a real difference, and we are excited to see the groundbreaking solutions that will emerge from this partnership."

Greentown and Shoreless will collaborate on workshops that address industry needs for technical teams, and Shoreless will also work to provide engagement opportunities and tailored workshops for Greentown’s startups and residents. Interested companies can inquire here.

Recently, Greentown Labs also partnered with Los Angeles-based software development firm Nominal to launch the new Industrial Center of Excellence at Greentown's Houston incubator. It also announced a partnership with Houston-based EnergyTech Nexus, which will also open an investor lounge on-site last month. Read more here.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston medical institutions launch $6M kidney research incubator

NIH funding

Institutions within Houston’s Texas Medical Center have launched the Houston Area Incubator for Kidney, Urologic and Hematologic Research Training (HAI-KUH) program. The incubator will be backed by $6.25 million over five years from the National Institutes of Health and aims to create a training pipeline for researchers.

HAI-KUH will include 58 investigators from Baylor College of Medicine, Texas Children’s Hospital, the University of Texas Health Science Center at Houston, University of Houston, Houston Methodist Research Institute, MD Anderson Cancer Center, Rice University and Texas A&M University Institute of Biosciences and Technology. The program will fund six predoctoral students and six postdoctoral associates. Trainees will receive support in scientific research, professional development and networking.

According to the organizations, Houston has a high burden of kidney diseases, hypertension, sickle cell disease and other nonmalignant hematologic conditions. HAI-KUH will work to improve the health of patients by building a strong scientific workforce that leverages the team's biomedical research resources to develop research skills of students and trainees and prepare them for sustained and impactful careers. The funding comes through the National Institute of Diabetes and Digestive and Kidney Diseases.

The principal investigators of the project include Dr. Alison Bertuch, professor of pediatric oncology and molecular and human genetics at BCM; Peter Doris, professor and director of the Institute of Molecular Medicine Center for Human Genetics at UT Health; and Margaret Goodell, professor and chair of the Department of Molecular and Cellular Biology at Baylor.

“This new award provides unique collaborative training experiences that extend beyond the outstanding kidney, urology, and hematology research going on in the Texas Medical Center,” Doris said in a news release. “In conceiving this award, the National Institute of Diabetes and Digestive and Kidney Diseases envisioned trainee development across the full spectrum of skills required for professional success.”

Jeffrey Rimer, a professor of Chemical Engineering, is a core investigator on the project and program director at UH. Rimer is known for his breakthroughs in using innovative methods in control crystals to help treat malaria and kidney stones. Other co-investigators include Dr. Wolfgang Winkelmeyer (Baylor), Oleh Pochynyuk (UTHealth), Dr. Rose Khavari (Houston Methodist) and Pamela Wenzel (UT Health).

“This new NIH-sponsored training program will enable us to recruit talented students and postdocs to work on these challenging areas of research,” Rimer added in a release.