Two Houston-area research projects out of local universities have created new, greener technologies. Photo courtesy of Rice University

Research, perhaps now more than ever, is crucial to expanding and growing innovation in Houston — and it's happening across the city right under our noses.

In InnovationMap's latest roundup of research news, two Houston institutions are working on clean energy innovation thanks to new technologies.

Rice University team develops seeds for growing solar energy collectors

Rice engineers discovered a self-assembly method for producing the films from "seeds," submicroscopic pieces of 2D crystals that serve as templates. Photo by Jeff Fitlow/Rice University

Man-made solar panels are continuing to be affixed to rooftops everywhere, but scientists at Rice University have just figured out a way to grow solar energy collectors in a more efficient way than ever before.

3D halide perovskite photovoltaic devices have been developed relatively reliably, but the Rice engineers have created microscopic seeds for growing 2D perovskite crystals that are both stable and highly efficient at harvesting electricity from sunlight, according to a release from Rice.

"We've come up with a method where you can really tailor the properties of the macroscopic films by first tailoring what you put into solution," said study co-author Aditya Mohite, an associate professor of chemical and biomolecular engineering and of materials science and nanoengineering at Rice. "You can arrive at something that is very homogeneous in its size and properties, and that leads to higher efficiency. We got almost state-of-the-art device efficiency for the 2D case of 17%, and that was without optimization. We think we can improve on that in several ways."

The study was published online in Advanced Materials by Mohite and his fellow chemical engineers from Rice's Brown School of Engineering. The seeds can be used to grow homogenous thin films that proved both efficient and reliable, a previously problematic combination for devices made from either 3D or 2D perovskites.

"Homogeneous films are expected to lead to optoelectronic devices with both high efficiency and technologically relevant stability," he says.

The process is more efficient and effective, as well as being cheaper. The Department of Energy's Office of Energy Efficiency and Renewable Energy and the Academic Institute of France and the Office of Naval Research supported the project.

Houston researchers are finding ways to improve EV batteries

Houston researchers are working on a new way to make electric vehicles more commercially viable with enhanced — and cheaper — batteries. Photo via uh.edu

Only a small fraction of vehicles on the road these days are electric — but that's going to change. It's projected that EVs will make up 30 percent of on-road vehicles in 2030. A team of scientists at the University of Houston are focusing on improving EV batteries — a major key in the commercialization of these greener vehicles.

The UH team — Yan Yao, Cullen Professor of electrical and computer engineering at the Cullen College of Engineering at the University of Houston, and UH post doctorate Jibo Zhang — are taking on this challenge with Rice University colleagues — Zhaoyang Chen, Fang Hao, Yanliang Liang of UH, Qing Ai, Tanguy Terlier, Hua Guo and Jun Lou.

In a recently published paper in Joule, the team demonstrated a two-fold improvement in energy density for organic-based, solid state lithium batteries by using a solvent-assisted process to alter the electrode microstructure, according to a news release from UH.

"We are developing low-cost, earth-abundant, cobalt-free organic-based cathode materials for a solid-state battery that will no longer require scarce transition metals found in mines," says Yao in the release. "This research is a step forward in increasing EV battery energy density using this more sustainable alternative."

Yao, who is also Principal Investigator with the Texas Center for Superconductivity at UH, explains that there is increasing concern about the supply chain of lithium-ion batteries in the United States.

"In this work, we show the possibility of building high energy-density lithium batteries by replacing transition metal-based cathodes with organic materials obtained from either an oil refinery or biorefinery, both of which the U.S. has the largest capacity in the world," he goes on to say.

The cost of EV batteries declined to nearly 10 percent of their original cost over the past decade, and innovation and research like this project are only going to make EVs more commercially viable. The research was funded by the US Department of Energy's Office of Energy Efficiency and Renewable Energy as part of the Battery 500 Consortium.

John Berger, CEO of Houston-based Sunnova, is this week's Houston Innovators Podcast guest. Courtesy of Sunnova

Houston solar energy exec shines light on company growth and IPO

HOUSTON INNOVATORS PODCAST EPISODE 15

It was all about the timing for John Berger, founder and CEO of Sunnova, a Houston-based residential solar energy company.

When he founded his company in 2012 in Houston, solar energy wasn't the trendy sustainability option it is today, but Berger saw the potential for technology within the industry. So, with a lot of perseverance and the right team behind him, he scaled Sunnova through nationwide expansion, billions of money raised, and a debut on the stock market last July — something that also happened with great timing.

About 72 hours after Sunnova went public last July, the Federal Reserve System announced it was going to cut rates. Additionally, Sunnova's IPO occurred ahead of WeWork's failed IPO.

"We went public in a market that still isn't back open again, I think, for IPOs," Berger says on this week's episode of the Houston Innovators Podcast. "We had pretty good timing when we went out the door."

However great the timing was, Sunnova's success is built on the hard work and skills of the company's employees, Berger explains on the podcast, and now running a public company requires a dynamic leader.

"I really look at myself and how I can change myself," Berger says. "I'm a different CEO today than I was 12 months ago, and hopefully I'll be a different CEO in 12 months, because the company demands it."

In the episode, Berger lifts the curtain on Sunnova's IPO, explains where he sees the solar energy industry headed, how battery storage technology has evolved, and why he's not worried about who ends up in the White House. Listen to the full episode below — or wherever you get your podcasts — and subscribe for weekly episodes.


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston chemist lands $2M NIH grant for cancer treatment research

future of cellular health

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories.

Xiao will use the five-year grant to develop noncanonical amino acids (ncAAs) with diverse properties to help build proteins, according to a statement from Rice. He and his team will then use the ncAAs to explore the vivo sensors for enzymes involved in posttranslational modifications (PTMs), which play a role in the development of cancers and neurological disorders. Additionally, the team will look to develop a way to detect these enzymes in living organisms in real-time rather than in a lab.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement.

According to Rice, these developments could have major implications for the way diseases are treated, specifically for epigenetic inhibitors that are used to treat cancer.

Xiao helped lead the charge to launch Rice's new Synthesis X Center this spring. The center, which was born out of informal meetings between Xio's lab and others from the Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center at the Baylor College of Medicine, aims to improve cancer outcomes by turning fundamental research into clinical applications.

They will build upon annual retreats, in which investigators can share unpublished findings, and also plan to host a national conference, the first slated for this fall titled "Synthetic Innovations Towards a Cure for Cancer.”

Houston neighbor ranks as one of America's most livable small cities

mo city

Some Houston suburbs stick out from the rest thanks to their affluent residents, and now Missouri City is getting time in the spotlight, thanks to its new ranking as the No. 77 most livable small city in the country.

The tiny but mighty Houston neighbor, located less than 20 miles southwest of Houston, was among six Texas cities that earned a top-100 ranking in SmartAsset's 2024 " Most Livable Small Cities" report. It compared 281 U.S. cities with populations between 65,000 and 100,000 residents across eight metrics, such as a resident's housing costs as a percentage of household income, the city's average commute times, and the proportions of entertainment, food service, and healthcare establishments.

According to the U.S. Census Bureau, Missouri City has an estimated population of over 76,000 residents, whose median household income comes out to $97,211. SmartAsset calculated that a Missouri City household's annual housing costs only take up 19.4 percent of that household's income. Additionally, the study found only six percent of the town's population live below the poverty level.

Here's how Missouri City performed in two other metrics in the study:

  • 1.4 percent – The proportion of arts, entertainment, and recreation businesses as a percentage of all businesses
  • 29.9 minutes – Worker's average commute time

But income and housing aren't the only things that make Missouri City one of the most livable small cities in Texas. Residents benefit from its proximity from central Houston, but the town mainly prides itself on its spacious park system, playgrounds, and other recreational activities.

Missouri City, Texas

Missouri City residents have plenty of parkland to enjoy. www.missouricitytx.gov

The Missouri City Parks and Recreation Departmen meticulously maintains 21 parks spanning just over 515 acres of land, an additional 500 acres of undeveloped parkland, and 14.4 miles of trails throughout the town, according to the city's website."Small cities may offer cost benefits for residents looking to stretch their income while enjoying a comfortable – and more spacious – lifestyle," the report's author wrote. "While livability is a subjective concept that may take on different definitions for different people, some elements of a community can come close to being universally beneficial."

Missouri City is also home to Fort Bend Town Square, a massive mixed-use development at the intersection of TX 6 and the Fort Bend Parkway. It offers apartments, shopping, and restaurants, including a rumored location of Trill Burgers.

Other Houston-area cities that earned a spot in the report include

Spring (No. 227) and Baytown (No. 254).The five remaining Texas cities that were among the top 100 most livable small cities in the U.S. include Flower Mound (No. 29), Leander (No. 60), Mansfield (No. 69), Pflugerville (No. 78), and Cedar Park (No. 85).

The top 10 most livable small cities in the U.S. are:

  • No. 1 – Troy, Michigan
  • No. 2 – Rochester Hills, Michigan
  • No. 3 – Eau Claire, Wisconsin
  • No. 4 – Franklin, Tennessee
  • No. 5 – Redmond, Washington
  • No. 6 – Appleton, Wisconsin
  • No. 7 – Apex, North Carolina
  • No. 8 – Plymouth, Minnesota
  • No. 9 – Livonia, Michigan
  • No. 10 – Oshkosh, Wisconsin

The report examined data from the U.S. Census Bureau's 2022 1-year American Community Survey and the 2021 County Business Patterns Survey to determine its rankings.The report and its methodology can be found on

smartasset.com

.

------

This article originally ran on CultureMap.