Two Houston-area research projects out of local universities have created new, greener technologies. Photo courtesy of Rice University

Research, perhaps now more than ever, is crucial to expanding and growing innovation in Houston — and it's happening across the city right under our noses.

In InnovationMap's latest roundup of research news, two Houston institutions are working on clean energy innovation thanks to new technologies.

Rice University team develops seeds for growing solar energy collectors

Rice engineers discovered a self-assembly method for producing the films from "seeds," submicroscopic pieces of 2D crystals that serve as templates. Photo by Jeff Fitlow/Rice University

Man-made solar panels are continuing to be affixed to rooftops everywhere, but scientists at Rice University have just figured out a way to grow solar energy collectors in a more efficient way than ever before.

3D halide perovskite photovoltaic devices have been developed relatively reliably, but the Rice engineers have created microscopic seeds for growing 2D perovskite crystals that are both stable and highly efficient at harvesting electricity from sunlight, according to a release from Rice.

"We've come up with a method where you can really tailor the properties of the macroscopic films by first tailoring what you put into solution," said study co-author Aditya Mohite, an associate professor of chemical and biomolecular engineering and of materials science and nanoengineering at Rice. "You can arrive at something that is very homogeneous in its size and properties, and that leads to higher efficiency. We got almost state-of-the-art device efficiency for the 2D case of 17%, and that was without optimization. We think we can improve on that in several ways."

The study was published online in Advanced Materials by Mohite and his fellow chemical engineers from Rice's Brown School of Engineering. The seeds can be used to grow homogenous thin films that proved both efficient and reliable, a previously problematic combination for devices made from either 3D or 2D perovskites.

"Homogeneous films are expected to lead to optoelectronic devices with both high efficiency and technologically relevant stability," he says.

The process is more efficient and effective, as well as being cheaper. The Department of Energy's Office of Energy Efficiency and Renewable Energy and the Academic Institute of France and the Office of Naval Research supported the project.

Houston researchers are finding ways to improve EV batteries

Houston researchers are working on a new way to make electric vehicles more commercially viable with enhanced — and cheaper — batteries. Photo via uh.edu

Only a small fraction of vehicles on the road these days are electric — but that's going to change. It's projected that EVs will make up 30 percent of on-road vehicles in 2030. A team of scientists at the University of Houston are focusing on improving EV batteries — a major key in the commercialization of these greener vehicles.

The UH team — Yan Yao, Cullen Professor of electrical and computer engineering at the Cullen College of Engineering at the University of Houston, and UH post doctorate Jibo Zhang — are taking on this challenge with Rice University colleagues — Zhaoyang Chen, Fang Hao, Yanliang Liang of UH, Qing Ai, Tanguy Terlier, Hua Guo and Jun Lou.

In a recently published paper in Joule, the team demonstrated a two-fold improvement in energy density for organic-based, solid state lithium batteries by using a solvent-assisted process to alter the electrode microstructure, according to a news release from UH.

"We are developing low-cost, earth-abundant, cobalt-free organic-based cathode materials for a solid-state battery that will no longer require scarce transition metals found in mines," says Yao in the release. "This research is a step forward in increasing EV battery energy density using this more sustainable alternative."

Yao, who is also Principal Investigator with the Texas Center for Superconductivity at UH, explains that there is increasing concern about the supply chain of lithium-ion batteries in the United States.

"In this work, we show the possibility of building high energy-density lithium batteries by replacing transition metal-based cathodes with organic materials obtained from either an oil refinery or biorefinery, both of which the U.S. has the largest capacity in the world," he goes on to say.

The cost of EV batteries declined to nearly 10 percent of their original cost over the past decade, and innovation and research like this project are only going to make EVs more commercially viable. The research was funded by the US Department of Energy's Office of Energy Efficiency and Renewable Energy as part of the Battery 500 Consortium.

John Berger, CEO of Houston-based Sunnova, is this week's Houston Innovators Podcast guest. Courtesy of Sunnova

Houston solar energy exec shines light on company growth and IPO

HOUSTON INNOVATORS PODCAST EPISODE 15

It was all about the timing for John Berger, founder and CEO of Sunnova, a Houston-based residential solar energy company.

When he founded his company in 2012 in Houston, solar energy wasn't the trendy sustainability option it is today, but Berger saw the potential for technology within the industry. So, with a lot of perseverance and the right team behind him, he scaled Sunnova through nationwide expansion, billions of money raised, and a debut on the stock market last July — something that also happened with great timing.

About 72 hours after Sunnova went public last July, the Federal Reserve System announced it was going to cut rates. Additionally, Sunnova's IPO occurred ahead of WeWork's failed IPO.

"We went public in a market that still isn't back open again, I think, for IPOs," Berger says on this week's episode of the Houston Innovators Podcast. "We had pretty good timing when we went out the door."

However great the timing was, Sunnova's success is built on the hard work and skills of the company's employees, Berger explains on the podcast, and now running a public company requires a dynamic leader.

"I really look at myself and how I can change myself," Berger says. "I'm a different CEO today than I was 12 months ago, and hopefully I'll be a different CEO in 12 months, because the company demands it."

In the episode, Berger lifts the curtain on Sunnova's IPO, explains where he sees the solar energy industry headed, how battery storage technology has evolved, and why he's not worried about who ends up in the White House. Listen to the full episode below — or wherever you get your podcasts — and subscribe for weekly episodes.


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”