Hobby Airport's new solar canopy is operating at 100% capacity. Photo courtesy Houston Airports.

Houston's William P. Hobby Airport is generating its own clean energy.

Houston Airports announced that Hobby's red garage is now home to a "solar canopy" that is producing energy at 100 percent capacity to power daily operations. The photovoltaic (PV) solar system generated more than 1.1 gigawatt-hours of electricity in testing, and is expected to produce up to 1 megawatt-hour now that it's operating at full power.

“This project is proof that sustainability can be practical, visible and directly tied to the passenger experience,” Jim Szczesniak, director of aviation for Houston Airports, said in a news release. “Passengers now park under a structure that shields their cars from the Texas sun while generating clean energy that keeps airport operations running efficiently, lowering overall peak demand electrical costs during the day and our carbon footprint. It’s a win for travelers, the city and the planet.”

The project was completed by Texas A&M Engineering Experiment Station (TEES) and CenterPoint Energy. It's part of Houston Airport's efforts to reduce carbon emissions by 40 percent over its 2019 baseline.

In a separate announcement, the airport system also shared that it recently reached Level 3 in the Airports Council International (ACI) Airport Carbon Accreditation program after reducing emissions by 19 percent in three years. This includes reductions at George Bush Intercontinental Airport (IAH), Hobby and Ellington Airport/Houston Spaceport.

The reductions have come from initiatives such as adding electric vehicles to airport fleets, upgrading airfield lighting with LED bulbs, adding smarter power systems to terminals, and improving IAH's central utility plant with more efficient equipment. Additionally, the expansion to Hobby's West Concourse and renovations at IAH Terminal B incorporate cleaner equipment and technology.

According to Houston Airports, from 2019 to 2023:

  • IAH reduced emissions by 17 percent
  • Hobby reduced emissions by 32 percent
  • Ellington Airport reduced emissions by 4 percent

"I see firsthand how vital it is to link infrastructure with sustainability,” Houston City Council Member Twila Carter, chair of the council’s Resilience Committee, said in the release. “Reducing carbon emissions at our airports isn’t just about cleaner travel — it’s about smarter planning, safer communities and building a Houston that can thrive for generations to come.”

Chevron U.S.A. has acquired 125,000 acres in Northeast Texas and southwest Arkansas that contain a high amount of lithium. Photo via Getty Images.

Chevron enters the lithium market with major Texas land acquisition

to market

Chevron U.S.A., a subsidiary of Houston-based energy company Chevron, has taken its first big step toward establishing a commercial-scale lithium business.

Chevron acquired leaseholds totaling about 125,000 acres in Northeast Texas and southwest Arkansas from TerraVolta Resources and East Texas Natural Resources. The acreage contains a high amount of lithium, which Chevron plans to extract from brines produced from the subsurface.

Lithium-ion batteries are used in an array of technologies, such as smartwatches, e-bikes, pacemakers, and batteries for electric vehicles, according to Chevron. The International Energy Agency estimates lithium demand could grow more than 400 percent by 2040.

“This acquisition represents a strategic investment to support energy manufacturing and expand U.S.-based critical mineral supplies,” Jeff Gustavson, president of Chevron New Energies, said in a news release. “Establishing domestic and resilient lithium supply chains is essential not only to maintaining U.S. energy leadership but also to meeting the growing demand from customers.”

Rania Yacoub, corporate business development manager at Chevron New Energies, said that amid heightening demand, lithium is “one of the world’s most sought-after natural resources.”

“Chevron is looking to help meet that demand and drive U.S. energy competitiveness by sourcing lithium domestically,” Yacoub said.

---

This article originally appeared on EnergyCapital.

Musk says Tesla's robotaxis will roll out in Austin this month. Getty Images

Tesla's robotaxi service 'tentatively' to launch in Austin in June, Musk says

Tesla Talk

Elon Musk says Tesla is “tentatively” set to begin providing robotaxi service in Austin on June 22.

In a post on his X social media platform, Musk said the date could change because Tesla is “being super paranoid about safety.”

Investors, Wall Street analysts and Tesla enthusiasts have been anticipating the rollout of the driverless cabs since Musk said earlier this year that the service would launch in Austin sometime in June.

Last month, Musk told CNBC that the taxis will be remotely monitored at first and “geofenced” to certain areas of the city deemed the safest to navigate. He said he expected to initially run 10 or so taxis, increase that number rapidly and start offering the service in Los Angeles, San Antonio, San Francisco and other cities.

Musk has been promising fully autonomous, self-driving vehicles “next year” for a decade, but the pressure is on now as Tesla actually begins to operate a self-driving taxi service.

Sales of Tesla’s electric vehicles have sagged due to increased competition, the retooling of its most popular car, the Model Y, and the fallout from Musk’s turn to politics.

The Austin rollout also comes after Musk had a public blowup with President Donald Trump over the administration’s tax bill. Some analysts have expressed concern that Trump could retaliate by encouraging federal safety regulators to to step in at any sign of trouble for the robotaxis.

Chris George, United States co-lead at Octopus Electric Vehicles, joins the Houston Innovators Podcast. Photo courtesy of Octopus

Houston innovator drives EV adoption with unique approach to car leasing, smart tech

HOUSTON INNOVATORS PODCAST EPISODE 258

Switching from a gas-powered car to an electric one can be a big change, but a Houston-based company has made things a lot easier for its customers.

Octopus Electric Vehicles US, a spinout of United Kingdom-based retail energy provider Octopus Energy, matches its users with their perfect EV lease and sets them up with smart electricity technology for at-home charging.

"We do a couple of really unique things that are not only first of its kind but really innovative," Octopus EV's US Co-Lead Chris George says on the Houston Innovators Podcast, pointing out specifically Octopus Energy's Intelligent Octopus, a smart feature for customers that automates energy usage to lower cost.

"We launched an Intelligent Octopus for EVs service. Instead of operating in a very narrow window — overnight — it operates dynamically," he continues.


Pulling from the success of its British EV leasing business, Octopus EV helps Texans find their ideal car to lease from the available pre-owned EVs in the state. The process is hands on, George says, and he and his team are constantly working directly with customers to find them their right make, model, mileage, and more, then setting them up for free home charging with Octopus. All this for as low as $200 a month — perfect for both EV veterans and newbies alike.

"We serve a lot of people. What we're aiming to do is to drive adoption, and we're finding that for most people this is their first EV," George says, explaining that accessibility has been an issue for aspiring EV owners.

The company is rolling out a new process this week. In addition to providing its service in a match-making capacity, now Octopus EV will be showcasing EVs so that customers can browse, test drive, and really get to see what all they like before deciding on a car. George says this new process will be a bit of an experiment.

"We're gong to be showcasing inventory around Houston so customers can see the physical car, the lease price, test drive, and get the car you want," George says. "It's going to look and feel a little different from our current product, but it's going to serve customers just the same."

On the show, George, who previously led EV adoption-focused nonprofit Evolve Houston, shares a bit about the EV industry and what he's closely watching, including growth of charging stations, multifamily charging opportunities, battery technology for EVs and resilience, and perfecting messaging for new and returning customers.

"I'm always trying to think about where are the other things where we can unlock innovation, unlock ideas that help our industry and help Houstonians," George says.

The Rice team's process is up to 10 times more effective than existing lithium-ion battery recycling. Photo by Gustavo Raskosky/Rice University

Houston scientists discover breakthrough process for lithium-ion battery recycling

future of EVs

With the rise of electric vehicles, every ounce of lithium in lithium-ion batteries is precious. A team of scientists from Rice University has figured out a way to retrieve as much as 50 percent of the material in used battery cathodes in as little as 30 seconds.

Researchers at Rice University’s Nanomaterials Laboratory led by Department of Materials Science and NanoEngineering Chair Pulickel Ajayan released the findings a new study published in Advanced Functional Materials. Their work shows that the process overcomes a “bottleneck” in lithium-ion battery recycling technology. The researchers described a “rapid, efficient and environmentally friendly method for selective lithium recovery using microwave radiation and a readily biodegradable solvent,” according to a news release.

Past recycling methods have involved harsh acids, and alternative eco-friendly solvents like deep eutectic solvents (DESs) at times have not been as efficient and economically viable. Current recycling methods recover less than 5 percent of lithium, which is due to contamination and loss during the process.

In order to leach other metals like cobalt or nickel, both the choline chloride and the ethylene glycol have to be involved in the process, according to the researchers at Rice. The researchers submerged the battery waste material in the solvent and blasted it with microwave radiation since they knew that of the two substances only choline chloride is good at absorbing microwaves.

Microwave-assisted heating can achieve similar efficiencies like traditional oil bath heating almost 100 times faster. Using the microwave-based process, Rice found that it took 15 minutes to leach 87 percent of the lithium, which differs from the 12 hours needed to obtain the same recovery rate via oil bath heating.

“This method not only enhances the recovery rate but also minimizes environmental impact, which makes it a promising step toward deploying DES-based recycling systems at scale for selective metal recovery,” Ajayan says in the release.

Due to rise in EV production, the lithium-ion battery global market is expected to grow by over 23 percent in the next eight years, and was previously valued at over $65 billion in 2023.

“We’ve seen a colossal growth in LIB use in recent years, which inevitably raises concerns as to the availability of critical metals like lithium, cobalt and nickel that are used in the cathodes,” the study's co-author, Sohini Bhattacharyya, adds. “It’s therefore really important to recycle spent LIBs to recover these metals.”

------

This article originally ran on EnergyCapital.

Chick-fil-A has partnered with Faction, a California-based company that develops autonomous fleets. Photo courtesy of Faction

Houston's busiest Chick-fil-A flies solo with new driverless delivery

This article was written by CultureMap Columnist Ken Hoffman and originally appeared on CultureMap's Hoffman's Houston editorial series.

Next time you order “curbside delivery” from the Chick-fil-A on Kirby Drive and the Southwest Freeway, one of the top performing Chick-fil-A’s in the country, don’t be surprised if your Spicy Chicken Sandwich and waffle fries are delivered by a driverless three-wheeled electric vehicle that looks like a cross between a Big Wheels kiddie car and the Mars Rover.

It’s a first in Houston. Chick-fil-A has partnered with Faction, a California-based company that develops autonomous (driverless) fleets. Earlier this week I met with Ain McKendrick, the founder and CEO of Faction, who explained how Chick-fil-A’s futuristic curbside delivery system works.

The key word is curbside. Unlike popular food deliverers like DoorDash and UberEats, Faction’s robotic vehicles don’t involve a human driver who will bring the food to your door, with the expectation of receiving a tip.

When a Faction vehicle delivers your food, you will get a text that the vehicle has arrived, and you’ll walk to the curb and pick up your food from the car that’s parked in front of your house. Throw some clothes on, please. The neighbors may see you.

When you order from the Kirby/Southwest Chick-fil-A on the Chick-fil-A app, and click on delivery, you’ll be given a choice of how you want your food brought to your house. You can still request DoorDash or another service. If you choose “curbside delivery,” watch for a Faction vehicle pulling up in front of your house. You’ll pop open the storage door, open the separate boxes that keep your sandwiches and fries toasty and your soft drinks cold, and run back into your house to dig in.

Right now, the Kirby/Southwest Freeway Chick-fil-A is using two Faction vehicles to supplement the regular delivery cars during crush time. Faction promises (they couch the claim by saying “estimates”) you’ll get your food within 30 minutes. Currently human “supervisors” are doing ride-alongs while the vehicles are mapping out the restaurant’s four-mile delivery area. Faction follows its vehicles’ progress on a video board at home base making sure each delivery goes right.

The electric vehicles are licensed and insured and can do 75 miles-per-hour on highways. But because of Houston’s notorious traffic, Faction has programmed the vehicles to stay on surface streets and below the speed limit. That’s how I get around, too. I got tired of that inexplicable traffic jam on the Southwest Freeway when it bends toward downtown.

McKendrick said the driverless vehicles will have memorized Houston streets well enough by August to operate without human supervisors.

Will customers be OK with their Chick-fil-A food delivered by driverless vehicles? So far it’s not a problem. In fact, McKendrick said some customers wait outside with their phone cameras ready so they can share photos of the delivery. Sharing their waffle fries is a different story.

I’m a skeptic when it comes to electric and driverless vehicles. I asked McKendrick …

What happens if a dog runs in front of a Faction vehicle? He said it will automatically stop for the pooch.

What if there’s a children’s birthday party on my block and there’s no parking space in front of my house? He said the vehicle will pull to the side and flash warning lights until the customer picks up their food.

So what’s in it for Chick-fil-A to partner with Faction? Kirby/Southwest Freeway Chick-fil-A owner Jesse Chaluh said it’s a more efficient way of offering delivery service to his customers. He thinks that his restaurant eventually will require five or more Faction vehicles to handle the demand.

While each vehicle currently delivers one order to one customer per run, eventually the technology will improve where each vehicle will be able to make several deliveries with each foray onto the streets of Houston.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston neighbor named richest small town in Texas for 2025

Ranking It

Affluent Houston neighbor Bellaire is cashing in as the richest small town in Texas for 2025, according to new study from GoBankingRates.

The report, "The Richest Small Town in Every State," used data from the U.S. Census Bureau's American Community Survey to determine the 50 richest small towns in America based on their median household income.

Of course, Houstonians realize that describing Bellaire as a "small town" is a bit of misnomer. Located less than 10 miles from downtown and fully surrounded by the City of Houston, Bellaire is a wealthy enclave that boasts a population of just over 17,000 residents. These affluent citizens earn a median $236,311 in income every year, which GoBankingRates says is the 11th highest household median income out of all 50 cities included in the report.

The average home in this city is worth over $1.12 million, but Bellaire's lavish residential reputation often attracts properties with multimillion-dollar price tags.

Bellaire also earned a shining 81 livability score for its top quality schools, health and safety, commute times, and more. The livability index, provided by Toronto, Canada-based data analytics and real estate platform AreaVibes, said Bellaire has "an abundance of exceptional local amenities."

"Among these are conveniently located grocery stores, charming coffee shops, diverse dining options and plenty of spacious parks," AreaVibes said. "These local amenities contribute significantly to its overall appeal, ensuring that [residents'] daily needs are met and offering ample opportunities for leisure and recreation."

Earlier in 2025, GoBankingRates ranked Bellaire as the No. 23 wealthiest suburb in America, and it's no stranger to being named on similar lists comparing the richest American cities.

---

This article originally appeared on CultureMap.com.

How a Houston startup is taking on corrosion, a costly climate threat

now streaming

Corrosion is not something most people think about, but for Houston's industrial backbone pipelines, refineries, chemical plants, and water infrastructure, it is a silent and costly threat. Replacing damaged steel and overusing chemicals adds hundreds of millions of tons of carbon emissions every year. Despite the scale of the problem, corrosion detection has barely changed in decades.

In a recent episode of the Energy Tech Startups Podcast, Anwar Sadek, founder and CEO of Corrolytics, explained why the traditional approach is not working and how his team is delivering real-time visibility into one of the most overlooked challenges in the energy transition.

From Lab Insight to Industrial Breakthrough

Anwar began as a researcher studying how metals degrade and how microbes accelerate corrosion. He quickly noticed a major gap. Companies could detect the presence of microorganisms, but they could not tell whether those microbes were actually causing corrosion or how quickly the damage was happening. Most tests required shipping samples to a lab and waiting months for results, long after conditions inside the asset had changed.

That gap inspired Corrolytics' breakthrough. The company developed a portable, real-time electrochemical test that measures microbial corrosion activity directly from fluid samples. No invasive probes. No complex lab work. Just the immediate data operators can act on.

“It is like switching from film to digital photography,” Anwar says. “What used to take months now takes a couple of hours.”

Why Corrosion Matters in Houston's Energy Transition

Houston's energy transition is a blend of innovation and practicality. While the world builds new low-carbon systems, the region still depends on existing industrial infrastructure. Keeping those assets safe, efficient, and emission-conscious is essential.

This is where Corrolytics fits in. Every leak prevented, every pipeline protected, and every unnecessary gallon of biocide avoided reduces emissions and improves operational safety. The company is already seeing interest across oil and gas, petrochemicals, water and wastewater treatment, HVAC, industrial cooling, and biofuels. If fluids move through metal, microbial corrosion can occur, and Corrolytics can detect it.

Because microbes evolve quickly, slow testing methods simply cannot keep up. “By the time a company gets lab results, the environment has changed completely,” Anwar explains. “You cannot manage what you cannot measure.”

A Scientist Steps Into the CEO Role

Anwar did not plan to become a CEO. But through the National Science Foundation's ICorps program, he interviewed more than 300 industry stakeholders. Over 95 percent cited microbial corrosion as a major issue with no effective tool to address it. That validation pushed him to transform his research into a product.

Since then, Corrolytics has moved from prototype to real-world pilots in Brazil and Houston, with early partners already using the technology and some preparing to invest. Along the way, Anwar learned to lead teams, speak the language of industry, and guide the company through challenges. “When things go wrong, and they do, it is the CEO's job to steady the team,” he says.

Why Houston

Relocating to Houston accelerated everything. Customers, partners, advisors, and manufacturing talent are all here. For industrial and energy tech startups, Houston offers an ecosystem built for scale.

What's Next

Corrolytics is preparing for broader pilots, commercial partnerships, and team growth as it continues its fundraising efforts. For anyone focused on asset integrity, emissions reduction, or industrial innovation, this is a company to watch.

Listen to the full conversation with Anwar Sadek on the Energy Tech Startups Podcast to learn more:

---

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.

This article originally appeared on our sister site, EnergyCapitalHTX.com.

These 50+ Houston scientists rank among world’s most cited

science stars

Fifty-one scientists and professors from Houston-area universities and institutions were named among the most cited in the world for their research in medicine, materials sciences and an array of other fields.

The Clarivate Highly Cited Researchers considers researchers who have authored multiple "Highly Cited Papers" that rank in the top 1percent by citations for their fields in the Web of Science Core Collection. The final list is then determined by other quantitative and qualitative measures by Clarivate's judges to recognize "researchers whose exceptional and community-wide contributions shape the future of science, technology and academia globally."

This year, 6,868 individual researchers from 60 different countries were named to the list. About 38 percent of the researchers are based in the U.S., with China following in second place at about 20 percent.

However, the Chinese Academy of Sciences brought in the most entries, with 258 researchers recognized. Harvard University with 170 researchers and Stanford University with 141 rounded out the top 3.

Looking more locally, the University of Texas at Austin landed among the top 50 institutions for the first time this year, tying for 46th place with the Mayo Clinic and University of Minnesota Twin Cities, each with 27 researchers recognized.

Houston once again had a strong showing on the list, with MD Anderson leading the pack. Below is a list of the Houston-area highly cited researchers and their fields.

UT MD Anderson Cancer Center

  • Ajani Jaffer (Cross-Field)
  • James P. Allison (Cross-Field)
  • Maria E. Cabanillas (Cross-Field)
  • Boyi Gan (Molecular Biology and Genetics)
  • Maura L. Gillison (Cross-Field)
  • David Hong (Cross-Field)
  • Scott E. Kopetz (Clinical Medicine)
  • Pranavi Koppula (Cross-Field)
  • Guang Lei (Cross-Field)
  • Sattva S. Neelapu (Cross-Field)
  • Padmanee Sharma (Molecular Biology and Genetics)
  • Vivek Subbiah (Clinical Medicine)
  • Jennifer A. Wargo (Molecular Biology and Genetics)
  • William G. Wierda (Clinical Medicine)
  • Ignacio I. Wistuba (Clinical Medicine)
  • Yilei Zhang (Cross-Field)
  • Li Zhuang (Cross-Field)

Rice University

  • Pulickel M. Ajayan (Materials Science)
  • Pedro J. J. Alvarez (Environment and Ecology)
  • Neva C. Durand (Cross-Field)
  • Menachem Elimelech (Chemistry and Environment and Ecology)
  • Zhiwei Fang (Cross-Field)
  • Naomi J. Halas (Cross-Field)
  • Jun Lou (Materials Science)
  • Aditya D. Mohite (Cross-Field)
  • Peter Nordlander (Cross-Field)
  • Andreas S. Tolias (Cross-Field)
  • James M. Tour (Cross-Field)
  • Robert Vajtai (Cross-Field)
  • Haotian Wang (Chemistry and Materials Science)
  • Zhen-Yu Wu (Cross-Field)

Baylor College of Medicine

  • Nadim J. Ajami (Cross-Field)
  • Biykem Bozkurt (Clinical Medicine)
  • Hashem B. El-Serag (Clinical Medicine)
  • Matthew J. Ellis (Cross-Field)
  • Richard A. Gibbs (Cross-Field)
  • Peter H. Jones (Pharmacology and Toxicology)
  • Sanjay J. Mathew (Cross-Field)
  • Joseph F. Petrosino (Cross-Field)
  • Fritz J. Sedlazeck (Biology and Biochemistry)
  • James Versalovic (Cross-Field)

University of Houston

  • Zhifeng Ren (Cross-Field)
  • Yan Yao (Cross-Field)
  • Yufeng Zhao (Cross-Field)
  • UT Health Science Center Houston
  • Hongfang Liu (Cross-Field)
  • Louise D. McCullough (Cross-Field)
  • Claudio Soto (Cross-Field)

UTMB Galveston

  • Erez Lieberman Aiden (Cross-Field)
  • Pei-Yong Shi (Cross-Field)

Houston Methodist

  • Eamonn M. M. Quigley (Cross-Field)