game changers

Rice University students collaborate on COVID-19 solutions

Rice 360˚ Institute of Global Health's student innovators created projects and devices — from disinfecting devices and optimized intubation tools — that respond to challenges presented by COVID-19. Courtesy of Rice University

An annual program with Rice University and its partners in Africa had to do things differently in light of the COVID-19 pandemic. Not only did operations have to shift to a virtual approach, but the projects themselves instead addressed the needs created by the disease.

Rice 360˚ Institute for Global Health, which collaborates with the Malawi University of Science and Technology (MUST) and the University of Malawi, The Polytechnic (Poly), continued their annual programming virtually over six weeks. The collaboration brings students together to solve global health issues, and this year's issue to address was overwhelmingly COVID-19.

"We had to give a lot of thought to whether we might have to cancel the program, and that was really heartbreaking to think about," says Rice 360˚ Director Rebecca Richards-Kortum, professor of bioengineering, in a news release. "Back in those days of late March and early April, I never really imagined how wonderful the virtual internship program could be."

Thirteen undergraduate interns and eight teaching assistants from Rice and Malawi, worked on six different projects, and three were presented in an online event on July 16. Here were the projects that were presented.

  • A disinfecting system that has the capability to sterilize multiple N95 masks at once. The system uses ultraviolet lights that can kill the coronavirus in around 30 minutes. Alternatively, the project included a smaller version that could be powered by solar energy. Yankholanga Pelewelo of MUST, Carolyn Gonawamba of Poly, and Andrew Abikhaled and Bhavya Gopinath of Rice developed the technology.
  • A walk-in decontamination unit that can decontaminate up to 3,000 people per day. The team of interns developed a prototype that consisted of PVC frame covered in plastic with nozzles to spray disinfectant. The project has already received interest from labs and hospitals for the device. Team members included Brenald Dzonzi of Poly, Mwayi Yellewa of MUST, and Kaitlyn Heintzelman, Krystal Cheung, and Sana Mohamed of Rice.
  • A redesigned intubation box that gives doctors better access to patients during the procedure. More than half of the 3,000 health care workers who have died from the coronavirus were doctors who focused on respiratory procedures, the team pointed out, and this daunting fact calls for redesigned tools. In total, the student innovators pitched three different designs that each included armholes in the sides, with a third hole on top to let a clinician or nurse assist with the procedure. The student team consisted of Chikumbutso Walani of Poly, Ruth Mtuwa of MUST, and Lauren Payne and Austin Hwang of Rice.

The other three projects included in the program but didn't present were designs for face shields, a hand sanitizer station and a contactless temperature monitor. All of the projects were led by teaching assistants Aubrey Chikunda and Chisomo Mukoka from MUST; Hannah Andersen, Nimisha Krishnaswamy, Alex Lammers and Ben Zaltsman of Rice; and Hope Chilunga and Francis Chilomo from Poly.

While pivoting the program to virtual comes with its challenges, Maria Oden — a professor of bioengineering, director of Rice's Oshman Engineering Design Kitchen and director of Rice 360˚ — recognizes the opportunities it provides as well.

"It would have been easy and understandable to cancel this internship, but that's not what happened, and look what the result was," Oden says in the release. "Over 90 people have tuned in to see the work of the interns. That's something we've never achieved with our in-person internships. We can learn from this experience."


Rice 360° Virtual Internship Highlights – Summer 2020 www.youtube.com

Trending News

Building Houston

 
 

A Rice University team of engineers designed a low-cost ventilator, and now the device, which has been picked up for manufacturing, has received approval from the FDA. Photo courtesy of Jeff Fitlow/Rice University

A ventilator that was designed by a team at Rice University has received Emergency Use Authorization from the U.S. Food and Drug Administration amid the COVID-19 pandemic.

The ApolloBVM was worked on March by students at Rice's Brown School of Engineering's Oshman Engineering Design Kitchen, or OEDK. The open-source plans were shared online so that those in need could have access to the life-saving technology. Since its upload, the ApolloBVM design has been downloaded by almost 3,000 registered participants in 115 countries.

"The COVID-19 pandemic pushed staff, students and clinical partners to complete a novel design for the ApolloBVM in the weeks following the initial local cases," says Maria Oden, a teaching professor of bioengineering at Rice and director of the OEDK, in the press release. "We are thrilled that the device has received FDA Emergency Use Authorization."

While development began in 2018 with a Houston emergency physician, Rohith Malya, Houston manufacturer Stewart & Stevenson Healthcare Technologies LLC, a subsidiary of Kirby Corporation that licensed ApolloBVM in April, has worked with the team to further manufacture the device into what it is today.

An enhanced version of the bag valve mask-based ventilator designed by Rice University engineers has won federal approval as an emergency resuscitator for use during the COVID-19 pandemic. Photo courtesy of Stewart & Stevenson

The Rice team worked out of OEDK throughout the spring and Stewart & Stevenson joined to support the effort along with manufacturing plants in Oklahoma City and Houston.

"The FDA authorization represents an important milestone achievement for the Apollo ABVM program," says Joe Reniers, president of Kirby Distribution and Services, in the release. "We can now commence manufacturing and distribution of this low-cost device to the front lines, providing health care professionals with a sturdy and portable ventilation device for patients during the COVID-19 pandemic."

Reniers continues, "It is a testimony to the flexibility of our people and our manufacturing facilities that we are able to readily utilize operations to support COVID-19 related need."

The device's name was selected as a tribute to Rice's history with NASA and President John F. Kennedy's now-famous speech kicking off the nation's efforts to go to the moon. It's meaningful to Matthew Wettergreen, one of the members of the design team.

"When a crisis hits, we use our skills to contribute solutions," Wettergreen previously told CultureMap. "If you can help, you should, and I'm proud that we're responding to the call."

Trending News