This week's roundup of Houston innovators includes Dr. William Cohn of BiVACOR, Rebecca Richards-Kortum of Rice University, and Michael Suffredini of Axiom Space. Photos courtesy

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes a Houston heart innovator, a cancer researcher, and space tech founder.

Dr. William Cohn, chief medical officer at BiVACOR

Why this Houston medical device innovator is pumped up for the first total artificial heart

Dr. William Cohn is the chief medical officer for BiVACOR, a medical device company creating the first total artificial heart. Photo via TMC

It's hard to understate the impact Dr. William Cohn has had on cardiovascular health as a surgeon at the Texas Heart Institute or on health care innovation as the director of the Center for Device Innovation at the Texas Medical Center. However, his role as chief medical officer of BiVACOR might be his most significant contribution to health care yet.

The company's Total Artificial Heart is unlike any cardiovascular device that's existed, Cohn explains on the Houston Innovators Podcast. While most devices are used temporarily for patients awaiting a heart transplant, BiVACOR's TAH has the potential to be a permanent solution for the 200,000 patients who die of heart failure annually. Last year, only around 4,000 patients were able to receive heart transplants.

"Artificial hearts historically have had bladders that ejected and filled 144,000 times a day. They work great for temporary support, but no one is suggesting they are permanent devices," Cohn says on the show. Read more.

Rebecca Richards-Kortum, director of the Rice360 Institute for Global Health Technologies

Rebecca Richards-Kortum, a Rice bioengineering professor and director of the Rice360 Institute for Global Health Technologies, is the lead PI on the project. Photo by Jeff Fitlow/Rice University

The Biden-Harris administration is deploying $150 million as a part of its Cancer Moonshot initiative, and a research team led by Rice University is getting a slice of that pie.

AccessPath is a novel, affordable, slide-free pathology system that helps surgeons determine if they have completely removed tumors during surgery. Rebecca Richards-Kortum, a Rice bioengineering professor and director of the Rice360 Institute for Global Health Technologies, is the lead PI on the project that is receiving up to $18 million over five years from the Advanced Research Projects Agency for Health (ARPA-H).

“Because of its low cost, high speed, and automated analysis, we believe AccessPath can revolutionize real-time surgical guidance, greatly expanding the range of hospitals able to provide accurate intraoperative tumor margin assessment and improving outcomes for all cancer surgery patients,” Richards-Kortum says. Read more.

Michael Suffredini, co-founder of Axiom Space

Axiom Space Co-founder Michael Suffredini is stepping down as CEO. Photo courtesy of Axiom Space

Houston-based space exploration company Axiom Space is searching for a new CEO. Co-founder Mike Suffredini stepped down effective August 9 as CEO. He cites unidentified personal reasons for his transition from CEO to company advisor. Suffredini remains a board member of Axiom Space.

Co-founder Kam Ghaffarian, the company’s executive chairman, is serving as interim CEO until Axiom Space taps Suffredini’s permanent successor. Read more.

AccessPath is a novel, affordable, slide-free pathology system that helps surgeons determine if they have completely removed tumors during surgery. Photo via Getty Images

Promising Houston cancer research project wins $18M grant

fresh funding

The Biden-Harris administration is deploying $150 million as a part of its Cancer Moonshot initiative, and a research team led by Rice University is getting a slice of that pie.

AccessPath is a novel, affordable, slide-free pathology system that helps surgeons determine if they have completely removed tumors during surgery. Rebecca Richards-Kortum, a Rice bioengineering professor and director of the Rice360 Institute for Global Health Technologies, is the lead PI on the project that is receiving up to $18 million over five years from the Advanced Research Projects Agency for Health (ARPA-H).

“Because of its low cost, high speed, and automated analysis, we believe AccessPath can revolutionize real-time surgical guidance, greatly expanding the range of hospitals able to provide accurate intraoperative tumor margin assessment and improving outcomes for all cancer surgery patients,” Richards-Kortum says in a news release.

The project is focused on two types of cancer, breast and head and neck cancer, and Ashok Veeraraghavan, chair of Rice’s Department of Electrical and Computer Engineering and a professor of electrical and computer engineering and computer science, is a co-PI and Tomasz Tkaczyk, a professor of bioengineering and electrical and computer engineering at Rice, is also a collaborator on the project.

AccessPath is addressing the challenge surgeons face of identifying the margin where tumor tissue ends and health tissue begins when removing tumors. The project not only hopes to provide a more exact solution but do so in an affordable way.

“Precise margin assessment is key to the oncologic success of any cancer operation,” adds Dr. Ana Paula Refinetti, an associate professor in the Department of Breast Surgical Oncology at The University of Texas MD Anderson Cancer Center and one of the lead surgeons PIs on the project. “The development of a new low-cost technology that enables immediate margin assessment could transform the landscape of surgical oncology — particularly in low-resource settings, reducing the number of repeat interventions, lowering cancer care costs and improving patient outcomes.”

The project optimizing margin identification with a fast-acting, high-resolution microscope, effective fluorescent stains for dying tumor margins, and artificial intelligence algorithms.

AccessPath is a collaboration between Rice and MD Anderson Cancer Center, other awardees in the grant include the University of Texas Health School of Dentistry, Duke University, Carnegie Mellon University and 3rd Stone Design.

“AccessPath is exactly the kind of life-changing research and health care innovation we are proud to produce at Rice, where we’re committed to addressing and solving the world’s most pressing medical issues,” Ramamoorthy Ramesh, Rice’s executive vice president for research, says in the release. “Partnering with MD Anderson on this vital work underscores the importance of such ongoing collaborations with our neighbors in the world’s largest medical center. I am thrilled for Rebecca and her team; it’s teamwork that makes discoveries like these possible.”

Rebecca Richards-Kortum, a Rice bioengineering professor and director of the Rice360 Institute for Global Health Technologies, is the lead PI on the project. Photo by Jeff Fitlow/Rice University

The Center for Innovation and Translation of POC Technologies for Equitable Cancer Care, or CITEC, will be managed through Rice360 Institute for Global Health Technologies. Photo via Getty Images

Rice-led initiative looks to make cancer detection affordable, equitable

future of health care

A new initiative from two Houston organizations is hoping to develop affordable health care innovation for early cancer detection.

The Center for Innovation and Translation of POC Technologies for Equitable Cancer Care, or CITEC, will be managed through Rice360 Institute for Global Health Technologies, which is part of an ongoing international effort to prepare the future global health workforce.

Rice will be joined by Baylor College of Medicine, University of Texas MD Anderson Cancer Center, University of Sao Paulo, Barretos Cancer Hospital in Brazil, Mozambique Ministry of Health, and Universidade Eduardo Mondlane in Maputo, Mozambique.

“While early detection and treatment of cancer can improve survival, available tests for early cancer detection are too complex or too expensive for hospitals and clinics in medically underserved areas,” CITEC co-principal investigator Rebecca Richards-Kortum, a Rice bioengineering professor and director of Rice360, says in a news release.

The project is part of a five-year grant from the National Institutes of Health to launch a top-tier research center in the Texas Medical Center to develop point-of-care technologies that improve early cancer detection in low-resource in America and internationally that are effective and affordable. Rice’s leading collaboration group to help secure the grant includes engineers, oncologists and international global health partners from three continents. in low-resource settings in the United States and other countries.

CITEC will aim to target development of POC tests for oral, cervical and gastrointestinal cancers through the first-year grant from the National Institute of Biomedical Imaging and Bioengineering (NIBIB) of $1.3 million—up to $6.5 million over five years. CITEC is funded by a NIBIB grant.

Last month, NIBIB announced that CITEC will be one of six research centers that it will support, along with an additional center, through its Point of Care Technology Research Network (POCTRN).

Dr. Sharmila Anandasabapathy, vice president of global health at Baylor College of Medicine, and Tomasz Tkaczyk, bioengineering professor at Rice, are the other two cco-principals on the initiative.

“CITEC will identify needed technologies, accelerate their development, evaluate their performance and impact in diverse settings and train local users and technology developers to create and disseminate more equitable POC technologies,” Anandasabapathy says in the release.

Rice 360˚ Institute of Global Health's student innovators created projects and devices — from disinfecting devices and optimized intubation tools — that respond to challenges presented by COVID-19. Courtesy of Rice University

Rice University students collaborate on COVID-19 solutions

game changers

An annual program with Rice University and its partners in Africa had to do things differently in light of the COVID-19 pandemic. Not only did operations have to shift to a virtual approach, but the projects themselves instead addressed the needs created by the disease.

Rice 360˚ Institute for Global Health, which collaborates with the Malawi University of Science and Technology (MUST) and the University of Malawi, The Polytechnic (Poly), continued their annual programming virtually over six weeks. The collaboration brings students together to solve global health issues, and this year's issue to address was overwhelmingly COVID-19.

"We had to give a lot of thought to whether we might have to cancel the program, and that was really heartbreaking to think about," says Rice 360˚ Director Rebecca Richards-Kortum, professor of bioengineering, in a news release. "Back in those days of late March and early April, I never really imagined how wonderful the virtual internship program could be."

Thirteen undergraduate interns and eight teaching assistants from Rice and Malawi, worked on six different projects, and three were presented in an online event on July 16. Here were the projects that were presented.

  • A disinfecting system that has the capability to sterilize multiple N95 masks at once. The system uses ultraviolet lights that can kill the coronavirus in around 30 minutes. Alternatively, the project included a smaller version that could be powered by solar energy. Yankholanga Pelewelo of MUST, Carolyn Gonawamba of Poly, and Andrew Abikhaled and Bhavya Gopinath of Rice developed the technology.
  • A walk-in decontamination unit that can decontaminate up to 3,000 people per day. The team of interns developed a prototype that consisted of PVC frame covered in plastic with nozzles to spray disinfectant. The project has already received interest from labs and hospitals for the device. Team members included Brenald Dzonzi of Poly, Mwayi Yellewa of MUST, and Kaitlyn Heintzelman, Krystal Cheung, and Sana Mohamed of Rice.
  • A redesigned intubation box that gives doctors better access to patients during the procedure. More than half of the 3,000 health care workers who have died from the coronavirus were doctors who focused on respiratory procedures, the team pointed out, and this daunting fact calls for redesigned tools. In total, the student innovators pitched three different designs that each included armholes in the sides, with a third hole on top to let a clinician or nurse assist with the procedure. The student team consisted of Chikumbutso Walani of Poly, Ruth Mtuwa of MUST, and Lauren Payne and Austin Hwang of Rice.

The other three projects included in the program but didn't present were designs for face shields, a hand sanitizer station and a contactless temperature monitor. All of the projects were led by teaching assistants Aubrey Chikunda and Chisomo Mukoka from MUST; Hannah Andersen, Nimisha Krishnaswamy, Alex Lammers and Ben Zaltsman of Rice; and Hope Chilunga and Francis Chilomo from Poly.

While pivoting the program to virtual comes with its challenges, Maria Oden — a professor of bioengineering, director of Rice's Oshman Engineering Design Kitchen and director of Rice 360˚ — recognizes the opportunities it provides as well.

"It would have been easy and understandable to cancel this internship, but that's not what happened, and look what the result was," Oden says in the release. "Over 90 people have tuned in to see the work of the interns. That's something we've never achieved with our in-person internships. We can learn from this experience."


Rice 360° Virtual Internship Highlights – Summer 2020www.youtube.com

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

2 Houston space tech cos. celebrate major tech milestones

big wins

Two Houston aerospace companies — Intuitive Machines and Venus Aerospace — have reached testing milestones for equipment they’re developing.

Intuitive Machines recently completed the first round of “human in the loop” testing for its Moon RACER (Reusable Autonomous Crewed Exploration Rover) lunar terrain vehicle. The company conducted the test at NASA’s Johnson Space Center.

RACER is one of three lunar terrain vehicles being considered by NASA for the space agency’s Artemis initiative, which will send astronauts to the moon.

NASA says human-in-the-loop testing can reveal design flaws and technical problems, and can lead to cost-efficient improvements. In addition, it can elevate the design process from 2D to 3D modeling.

Intuitive Machines says the testing “proved invaluable.” NASA astronauts served as test subjects who provided feedback about the Moon RACER’s functionality.

The Moon RACER, featuring a rechargeable electric battery and a robotic arm, will be able to accommodate two astronauts and more than 880 pounds of cargo. It’s being designed to pull a trailer loaded with more than 1,760 pounds of cargo.

Another Houston company, Venus Aerospace, recently achieved ignition of its VDR2 rocket engine. The engine, being developed in tandem with Ohio-based Velontra — which aims to produce hypersonic planes — combines the functions of a rotating detonation rocket engine with those of a ramjet.

A rotating detonation rocket engine, which isn’t equipped with moving parts, rapidly burns fuel via a supersonic detonation wave, according to the Air Force Research Laboratory. In turn, the engine delivers high performance in a small volume, the lab says. This savings in volume can offer range, speed, and affordability benefits compared with ramjets, rockets, and gas turbines.

A ramjet is a type of “air breathing” jet engine that does not include a rotary engine, according to the SKYbrary electronic database. Instead, it uses the forward motion of the engine to compress incoming air.

A ramjet can’t function at zero airspeed, so it can’t power an aircraft during all phases of flight, according to SKYbrary. Therefore, it must be paired with another kind of propulsion, such as a rotating detonation rocket engine, to enable acceleration at a speed where the ramjet can produce thrust.

“With this successful test and ignition, Venus Aerospace has demonstrated the exceptional ability to start a [ramjet] at takeoff speed, which is revolutionary,” the company says.

Venus Aerospace plans further testing of its engine in 2025.

Venus Aerospace, recently achieved ignition of its VDR2 rocket engine. Photo courtesy of Venus Aerospace

METRO rolls out electric shuttles for downtown Houston commuters

on a roll

The innovative METRO microtransit program will be expanding to the downtown area, the Metropolitan Transit Authority of Harris County announced on Monday.

“Microtransit is a proven solution to get more people where they need to go safely and efficiently,” Houston Mayor John Whitmire said in a statement. “Connected communities are safer communities, and bringing microtransit to Houston builds on my promise for smart, fiscally-sound infrastructure growth.”

The program started in June 2023 when the city’s nonprofit Evolve Houston partnered with the for-profit Ryde company to offer free shuttle service to residents of Second and Third Ward. The shuttles are all-electric and take riders to bus stops, medical buildings, and grocery stores. Essentially, it works as a traditional ride-share service but focuses on multiple passengers in areas where bus access may involve hazards or other obstacles. Riders access the system through the Ride Circuit app.

So far, the microtransit system has made a positive impact in the wards according to METRO. This has led to the current expansion into the downtown area. The system is not designed to replace the standard bus service, but to help riders navigate to it through areas where bus service is more difficult.

“Integrating microtransit into METRO’s public transit system demonstrates a commitment to finding innovative solutions that meet our customers where they are,” said METRO Board Chair Elizabeth Gonzalez Brock. “This on-demand service provides a flexible, easier way to reach METRO buses and rail lines and will grow ridership by solving the first- and last-mile challenges that have hindered people’s ability to choose METRO.”

The City of Houston approved a renewal of the microtransit program in July, authorizing Evolve Houston to spend $1.3 million on it. Some, like council member Letitia Plummer, have questioned whether microtransit is really the future for METRO as the service cuts lines such as the University Corridor.

However, the microtransit system serves clear and longstanding needs in Houston. Getting to and from bus stops in the city with its long blocks, spread-out communities, and fickle pedestrian ways can be difficult, especially for poor or disabled riders. While the bus and rail work fine for longer distances, shorter ones can be underserved.

Even in places like downtown where stops are plentiful, movement between them can still involve walks of a mile or more, and may not serve for short trips.

“Our microtransit service is a game-changer for connecting people, and we are thrilled to launch it in downtown Houston,” said Evolve executive director Casey Brown. “The all-electric, on-demand service complements METRO’s existing fixed-route systems while offering a new solution for short trips. This launch marks an important milestone for our service, and we look forward to introducing additional zones in the new year — improving access to public transit and local destinations.”

———

This article originally ran on CultureMap.