This week's roundup of Houston innovators includes Dr. William Cohn of BiVACOR, Rebecca Richards-Kortum of Rice University, and Michael Suffredini of Axiom Space. Photos courtesy

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes a Houston heart innovator, a cancer researcher, and space tech founder.

Dr. William Cohn, chief medical officer at BiVACOR

Why this Houston medical device innovator is pumped up for the first total artificial heart

Dr. William Cohn is the chief medical officer for BiVACOR, a medical device company creating the first total artificial heart. Photo via TMC

It's hard to understate the impact Dr. William Cohn has had on cardiovascular health as a surgeon at the Texas Heart Institute or on health care innovation as the director of the Center for Device Innovation at the Texas Medical Center. However, his role as chief medical officer of BiVACOR might be his most significant contribution to health care yet.

The company's Total Artificial Heart is unlike any cardiovascular device that's existed, Cohn explains on the Houston Innovators Podcast. While most devices are used temporarily for patients awaiting a heart transplant, BiVACOR's TAH has the potential to be a permanent solution for the 200,000 patients who die of heart failure annually. Last year, only around 4,000 patients were able to receive heart transplants.

"Artificial hearts historically have had bladders that ejected and filled 144,000 times a day. They work great for temporary support, but no one is suggesting they are permanent devices," Cohn says on the show. Read more.

Rebecca Richards-Kortum, director of the Rice360 Institute for Global Health Technologies

Rebecca Richards-Kortum, a Rice bioengineering professor and director of the Rice360 Institute for Global Health Technologies, is the lead PI on the project. Photo by Jeff Fitlow/Rice University

The Biden-Harris administration is deploying $150 million as a part of its Cancer Moonshot initiative, and a research team led by Rice University is getting a slice of that pie.

AccessPath is a novel, affordable, slide-free pathology system that helps surgeons determine if they have completely removed tumors during surgery. Rebecca Richards-Kortum, a Rice bioengineering professor and director of the Rice360 Institute for Global Health Technologies, is the lead PI on the project that is receiving up to $18 million over five years from the Advanced Research Projects Agency for Health (ARPA-H).

“Because of its low cost, high speed, and automated analysis, we believe AccessPath can revolutionize real-time surgical guidance, greatly expanding the range of hospitals able to provide accurate intraoperative tumor margin assessment and improving outcomes for all cancer surgery patients,” Richards-Kortum says. Read more.

Michael Suffredini, co-founder of Axiom Space

Axiom Space Co-founder Michael Suffredini is stepping down as CEO. Photo courtesy of Axiom Space

Houston-based space exploration company Axiom Space is searching for a new CEO. Co-founder Mike Suffredini stepped down effective August 9 as CEO. He cites unidentified personal reasons for his transition from CEO to company advisor. Suffredini remains a board member of Axiom Space.

Co-founder Kam Ghaffarian, the company’s executive chairman, is serving as interim CEO until Axiom Space taps Suffredini’s permanent successor. Read more.

AccessPath is a novel, affordable, slide-free pathology system that helps surgeons determine if they have completely removed tumors during surgery. Photo via Getty Images

Promising Houston cancer research project wins $18M grant

fresh funding

The Biden-Harris administration is deploying $150 million as a part of its Cancer Moonshot initiative, and a research team led by Rice University is getting a slice of that pie.

AccessPath is a novel, affordable, slide-free pathology system that helps surgeons determine if they have completely removed tumors during surgery. Rebecca Richards-Kortum, a Rice bioengineering professor and director of the Rice360 Institute for Global Health Technologies, is the lead PI on the project that is receiving up to $18 million over five years from the Advanced Research Projects Agency for Health (ARPA-H).

“Because of its low cost, high speed, and automated analysis, we believe AccessPath can revolutionize real-time surgical guidance, greatly expanding the range of hospitals able to provide accurate intraoperative tumor margin assessment and improving outcomes for all cancer surgery patients,” Richards-Kortum says in a news release.

The project is focused on two types of cancer, breast and head and neck cancer, and Ashok Veeraraghavan, chair of Rice’s Department of Electrical and Computer Engineering and a professor of electrical and computer engineering and computer science, is a co-PI and Tomasz Tkaczyk, a professor of bioengineering and electrical and computer engineering at Rice, is also a collaborator on the project.

AccessPath is addressing the challenge surgeons face of identifying the margin where tumor tissue ends and health tissue begins when removing tumors. The project not only hopes to provide a more exact solution but do so in an affordable way.

“Precise margin assessment is key to the oncologic success of any cancer operation,” adds Dr. Ana Paula Refinetti, an associate professor in the Department of Breast Surgical Oncology at The University of Texas MD Anderson Cancer Center and one of the lead surgeons PIs on the project. “The development of a new low-cost technology that enables immediate margin assessment could transform the landscape of surgical oncology — particularly in low-resource settings, reducing the number of repeat interventions, lowering cancer care costs and improving patient outcomes.”

The project optimizing margin identification with a fast-acting, high-resolution microscope, effective fluorescent stains for dying tumor margins, and artificial intelligence algorithms.

AccessPath is a collaboration between Rice and MD Anderson Cancer Center, other awardees in the grant include the University of Texas Health School of Dentistry, Duke University, Carnegie Mellon University and 3rd Stone Design.

“AccessPath is exactly the kind of life-changing research and health care innovation we are proud to produce at Rice, where we’re committed to addressing and solving the world’s most pressing medical issues,” Ramamoorthy Ramesh, Rice’s executive vice president for research, says in the release. “Partnering with MD Anderson on this vital work underscores the importance of such ongoing collaborations with our neighbors in the world’s largest medical center. I am thrilled for Rebecca and her team; it’s teamwork that makes discoveries like these possible.”

Rebecca Richards-Kortum, a Rice bioengineering professor and director of the Rice360 Institute for Global Health Technologies, is the lead PI on the project. Photo by Jeff Fitlow/Rice University

The Center for Innovation and Translation of POC Technologies for Equitable Cancer Care, or CITEC, will be managed through Rice360 Institute for Global Health Technologies. Photo via Getty Images

Rice-led initiative looks to make cancer detection affordable, equitable

future of health care

A new initiative from two Houston organizations is hoping to develop affordable health care innovation for early cancer detection.

The Center for Innovation and Translation of POC Technologies for Equitable Cancer Care, or CITEC, will be managed through Rice360 Institute for Global Health Technologies, which is part of an ongoing international effort to prepare the future global health workforce.

Rice will be joined by Baylor College of Medicine, University of Texas MD Anderson Cancer Center, University of Sao Paulo, Barretos Cancer Hospital in Brazil, Mozambique Ministry of Health, and Universidade Eduardo Mondlane in Maputo, Mozambique.

“While early detection and treatment of cancer can improve survival, available tests for early cancer detection are too complex or too expensive for hospitals and clinics in medically underserved areas,” CITEC co-principal investigator Rebecca Richards-Kortum, a Rice bioengineering professor and director of Rice360, says in a news release.

The project is part of a five-year grant from the National Institutes of Health to launch a top-tier research center in the Texas Medical Center to develop point-of-care technologies that improve early cancer detection in low-resource in America and internationally that are effective and affordable. Rice’s leading collaboration group to help secure the grant includes engineers, oncologists and international global health partners from three continents. in low-resource settings in the United States and other countries.

CITEC will aim to target development of POC tests for oral, cervical and gastrointestinal cancers through the first-year grant from the National Institute of Biomedical Imaging and Bioengineering (NIBIB) of $1.3 million—up to $6.5 million over five years. CITEC is funded by a NIBIB grant.

Last month, NIBIB announced that CITEC will be one of six research centers that it will support, along with an additional center, through its Point of Care Technology Research Network (POCTRN).

Dr. Sharmila Anandasabapathy, vice president of global health at Baylor College of Medicine, and Tomasz Tkaczyk, bioengineering professor at Rice, are the other two cco-principals on the initiative.

“CITEC will identify needed technologies, accelerate their development, evaluate their performance and impact in diverse settings and train local users and technology developers to create and disseminate more equitable POC technologies,” Anandasabapathy says in the release.

Rice 360˚ Institute of Global Health's student innovators created projects and devices — from disinfecting devices and optimized intubation tools — that respond to challenges presented by COVID-19. Courtesy of Rice University

Rice University students collaborate on COVID-19 solutions

game changers

An annual program with Rice University and its partners in Africa had to do things differently in light of the COVID-19 pandemic. Not only did operations have to shift to a virtual approach, but the projects themselves instead addressed the needs created by the disease.

Rice 360˚ Institute for Global Health, which collaborates with the Malawi University of Science and Technology (MUST) and the University of Malawi, The Polytechnic (Poly), continued their annual programming virtually over six weeks. The collaboration brings students together to solve global health issues, and this year's issue to address was overwhelmingly COVID-19.

"We had to give a lot of thought to whether we might have to cancel the program, and that was really heartbreaking to think about," says Rice 360˚ Director Rebecca Richards-Kortum, professor of bioengineering, in a news release. "Back in those days of late March and early April, I never really imagined how wonderful the virtual internship program could be."

Thirteen undergraduate interns and eight teaching assistants from Rice and Malawi, worked on six different projects, and three were presented in an online event on July 16. Here were the projects that were presented.

  • A disinfecting system that has the capability to sterilize multiple N95 masks at once. The system uses ultraviolet lights that can kill the coronavirus in around 30 minutes. Alternatively, the project included a smaller version that could be powered by solar energy. Yankholanga Pelewelo of MUST, Carolyn Gonawamba of Poly, and Andrew Abikhaled and Bhavya Gopinath of Rice developed the technology.
  • A walk-in decontamination unit that can decontaminate up to 3,000 people per day. The team of interns developed a prototype that consisted of PVC frame covered in plastic with nozzles to spray disinfectant. The project has already received interest from labs and hospitals for the device. Team members included Brenald Dzonzi of Poly, Mwayi Yellewa of MUST, and Kaitlyn Heintzelman, Krystal Cheung, and Sana Mohamed of Rice.
  • A redesigned intubation box that gives doctors better access to patients during the procedure. More than half of the 3,000 health care workers who have died from the coronavirus were doctors who focused on respiratory procedures, the team pointed out, and this daunting fact calls for redesigned tools. In total, the student innovators pitched three different designs that each included armholes in the sides, with a third hole on top to let a clinician or nurse assist with the procedure. The student team consisted of Chikumbutso Walani of Poly, Ruth Mtuwa of MUST, and Lauren Payne and Austin Hwang of Rice.

The other three projects included in the program but didn't present were designs for face shields, a hand sanitizer station and a contactless temperature monitor. All of the projects were led by teaching assistants Aubrey Chikunda and Chisomo Mukoka from MUST; Hannah Andersen, Nimisha Krishnaswamy, Alex Lammers and Ben Zaltsman of Rice; and Hope Chilunga and Francis Chilomo from Poly.

While pivoting the program to virtual comes with its challenges, Maria Oden — a professor of bioengineering, director of Rice's Oshman Engineering Design Kitchen and director of Rice 360˚ — recognizes the opportunities it provides as well.

"It would have been easy and understandable to cancel this internship, but that's not what happened, and look what the result was," Oden says in the release. "Over 90 people have tuned in to see the work of the interns. That's something we've never achieved with our in-person internships. We can learn from this experience."


Rice 360° Virtual Internship Highlights – Summer 2020www.youtube.com

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston foundation grants $27M to support Texas chemistry research

fresh funding

Houston-based The Welch Foundation has doled out $27 million in its latest round of grants for chemical research, equipment and postdoctoral fellowships.

According to a June announcement, $25.5 million was allocated for the foundation's longstanding research grants, which provide $100,000 per year in funding for three years to full-time, regular tenure or tenure-track faculty members in Texas. The foundation made 85 grants to faculty at 16 Texas institutions for 2025, including:

  • Michael I. Jacobs, assistant professor in the chemistry and biochemistry department at Texas State University, who is investigating the structure and thermodynamics of intrinsically disordered proteins, which could "reveal clues about how life began," according to the foundation.
  • Kendra K. Frederick, assistant professor in the biophysics department at The University of Texas Southwestern Medical Center, who is studying a protein linked to Parkinson’s disease.
  • Jennifer S. Brodbelt, professor in chemistry at The University of Texas at Austin, who is testing a theory called full replica symmetry breaking (fullRSB) on glass-like materials, which has implications for complex systems in physics, chemistry and biology.

Additional funding will be allocated to the Welch Postdoctoral Fellows of the Life Sciences Research Foundation. The program provides three-year fellowships to recent PhD graduates to support clinical research careers in Texas. Two fellows from Rice University and Baylor University will receive $100,000 annually for three years.

The Welch Foundation also issued $975,000 through its equipment grant program to 13 institutions to help them develop "richer laboratory experience(s)." The universities matched funds of $352,346.

Since 1954, the Welch Foundation has contributed over $1.1 billion for Texas-nurtured advancements in chemistry through research grants, endowed chairs and other chemistry-related ventures. Last year, the foundation granted more than $40.5 million in academic research grants, equipment grants and fellowships.

“Through funding basic chemical research, we are actively investing in the future of humankind,” Adam Kuspa, president of The Welch Foundation, said the news release. “We are proud to support so many talented researchers across Texas and continue to be inspired by the important work they complete every day.”

New Houston biotech co. developing capsules for hard-to-treat tumors

biotech breakthroughs

Houston company Sentinel BioTherapeutics has made promising headway in cancer immunotherapy for patients who don’t respond positively to more traditional treatments. New biotech venture creation studio RBL LLC (pronounced “rebel”) recently debuted the company at the 2025 American Society of Clinical Oncology (ASCO) Annual Meeting in Chicago.

Rima Chakrabarti is a neurologist by training. Though she says she’s “passionate about treating the brain,” her greatest fervor currently lies in leading Sentinel as its CEO. Sentinel is RBL’s first clinical venture, and Chakrabarti also serves as cofounder and managing partner of the venture studio.

The team sees an opportunity to use cytokine interleukin-2 (IL-2) capsules to fight many solid tumors for which immunotherapy hasn't been effective in the past. “We plan to develop a pipeline of drugs that way,” Chakrabarti says.

This may all sound brand-new, but Sentinel’s research goes back years to the work of Omid Veiseh, director of the Rice Biotechnology Launch Pad (RBLP). Through another, now-defunct company called Avenge Bio, Veiseh and Paul Wotton — also with RBLP and now RBL’s CEO and chairman of Sentinel — invested close to $45 million in capital toward their promising discovery.

From preclinical data on studies in mice, Avenge was able to manufacture its platform focused on ovarian cancer treatments and test it on 14 human patients. “That's essentially opened the door to understanding the clinical efficacy of this drug as well as it's brought this to the attention of the FDA, such that now we're able to continue that conversation,” says Chakrabarti. She emphasizes the point that Avenge’s demise was not due to the science, but to the company's unsuccessful outsourcing to a Massachusetts management team.

“They hadn't analyzed a lot of the data that we got access to upon the acquisition,” explains Chakrabarti. “When we analyzed the data, we saw this dose-dependent immune activation, very specific upregulation of checkpoints on T cells. We came to understand how effective this agent could be as an immune priming agent in a way that Avenge Bio hadn't been developing this drug.”

Chakrabarti says that Sentinel’s phase II trials are coming soon. They’ll continue their previous work with ovarian cancer, but Chakrabarti says that she also believes that the IL-2 capsules will be effective in the treatment of endometrial cancer. There’s also potential for people with other cancers located in the peritoneal cavity, such as colorectal cancer, gastrointestinal cancer and even primary peritoneal carcinomatosis.

“We're delivering these capsules into the peritoneal cavity and seeing both the safety as well as the immune activation,” Chakrabarti says. “We're seeing that up-regulation of the checkpoint that I mentioned. We're seeing a strong safety signal. This drug was very well-tolerated by patients where IL-2 has always had a challenge in being a well-tolerated drug.”

When phase II will take place is up to the success of Sentinel’s fundraising push. What we do know is that it will be led by Amir Jazaeri at MD Anderson Cancer Center. Part of the goal this summer is also to create an automated cell manufacturing process and prove that Sentinel can store its product long-term.

“This isn’t just another cell therapy,” Chakrabarti says.

"Sentinel's cytokine factory platform is the breakthrough technology that we believe has the potential to define the next era of cancer treatment," adds Wotton.

How Houston's innovation sector fared in 2025 Texas legislative session

That's a Wrap

The Greater Houston Partnership is touting a number of victories during the recently concluded Texas legislative session that will or could benefit the Houston area. They range from billions of dollars for dementia research to millions of dollars for energy projects.

“These wins were only possible through deep collaboration, among our coalition partners, elected officials, business and community leaders, and the engaged members of the Partnership,” according to a partnership blog post. “Together, we’ve demonstrated how a united voice for Houston helps drive results that benefit all Texans.”

In terms of business innovation, legislators carved out $715 million for nuclear, semiconductor, and other economic development projects, and a potential $1 billion pool of tax incentives through 2029 to support research-and-development projects. The partnership said these investments “position Houston and Texas for long-term growth.”

Dementia institute

One of the biggest legislative wins cited by the Greater Houston Partnership was passage of legislation sponsored by Sen. Joan Huffman, a Houston Republican, to provide $3 billion in funding over 10 years for the Dementia Prevention and Research Institute of Texas. Voters will be asked in November to vote on a ballot initiative that would set aside $3 billion for the new institute.

The dementia institute would be structured much like the Cancer Prevention and Research Institute of Texas (CPRIT), a state agency that provides funding for cancer research in the Lone Star State. Since its founding in 2008, CPRIT has awarded nearly $3.9 billion in research grants.

“By establishing the Dementia Prevention and Research Institute of Texas, we are positioning our state to lead the charge against one of the most devastating health challenges of our time,” Huffman said. “With $3 billion in funding over the next decade, we will drive critical research, develop new strategies for prevention and treatment, and support our healthcare community. Now, it’s up to voters to ensure this initiative moves forward.”

More than 500,000 Texans suffer from some form of dementia, including Alzheimer’s disease, according to Lt. Gov. Dan Patrick.

“With a steadfast commitment, Texas has the potential to become a world leader in combating [dementia] through the search for effective treatments and, ultimately, a cure,” Patrick said.

Funding for education

In the K-12 sector, lawmakers earmarked an extra $195 million for Houston ISD, $126.7 million for Cypress-Fairbanks ISD, $103.1 million for Katy ISD, $80.6 million for Fort Bend ISD, and $61 million for Aldine ISD, the partnership said.

In higher education, legislators allocated:

     
  • $1.17 billion for the University of Houston College of Medicine, University of Texas Health Science Center at Houston, UT MD Anderson Cancer Center, and Baylor College of Medicine
  • $922 million for the University of Houston System
  • $167 million for Texas Southern University
  • $10 million for the Center for Biotechnology at San Jacinto College.

Infrastructure

In the infrastructure arena, state lawmakers:

     
  • Approved $265 million for Houston-area water and flood mitigation projects, including $100 million for the Lynchburg Pump Station
  • Created the Lake Houston Dredging and Maintenance District
  • Established a fund for the Gulf Coast Protection District to supply $550 million for projects to make the coastline and ship channel more resilient

"Nuclear power renaissance"

House Bill 14 (HB 14) aims to lead a “nuclear power renaissance in the United States,” according to Texas Gov. Greg Abbott’s office. HB 14 establishes the Texas Advanced Nuclear Energy Office, and allocates $350 million for nuclear development and deployment. Two nuclear power plants currently operate in Texas, generating 10 percent of the energy that feeds the Electric Reliability Council Texas (ERCOT) power grid.

“This initiative will also strengthen Texas’ nuclear manufacturing capacity, rebuild a domestic fuel cycle supply chain, and train the future nuclear workforce,” Abbott said in a news release earlier this year.

One of the beneficiaries of Texas’ nuclear push could be Washington, D.C.-based Last Energy, which plans to build 30 micro-nuclear reactors near Abilene to serve power-gobbling data centers across the state. Houston-based Pelican Energy Partners also might be able to take advantage of the legislation after raising a $450 million fund to invest in companies that supply nuclear energy services and equipment.

Reed Clay, president of the Texas Nuclear Alliance, called this legislation “the most important nuclear development program of any state.”

“It is a giant leap forward for Texas and the United States, whose nuclear program was all but dead for decades,” said Clay. “With the passage of HB 14 and associated legislation, Texas is now positioned to lead a nuclear renaissance that is rightly seen as imperative for the energy security and national security of the United States.”

---

A version of this article first appeared on EnergyCapitalHTX.com.