Practice makes perfect

Houston company is using 3D printing to enhance surgeon training and prevent avoidable patient deaths

Lazarus 3D is using 3D printing to help advance surgeons' skills. Photo via laz3d.com

It is no surprise that, when a company offered life-like bladders for medical training, Houston urologists jumped at the opportunity — many had to learn the surgery by operating on bell peppers.

This sort of produce practice is the traditional method for teaching surgeons. Before a doctor ever makes an incision on a living person, they'll practice surgery on food — slicing bananas open and sewing grapes back together.

But for a pair of Baylor College of Medicine-educated doctors, that didn't seem like sufficient prep for working with living bodies; fruit surgery was not fruitful enough. In 2014, Drs. Jacques Zaneveld and Smriti Agrawal Zaneveld founded Lazarus3D to build a better training model — and layer by layer, they created models of abs and ribs and even hearts with a 3D printer.

"We adapted pre-existing 3D printing technology in a novel proprietary way that allows us to, overnight, build soft, silicone or hydrogel models of human anatomy," says Jacques, who serves as CEO. "They can be treated just like real tissue."

This isn't 3D printing's foray in medicine. In 1999, doctors in North Carolina implanted the first 3D-printed bladder in human bodies — they covered the synthetic organs in the patients' cells so that their bodies accepted them. Since, researchers have continued to find uses for the technology in the field, printing other organs and making prosthetic limbs.

But the Lazarus3D founders felt like medical training was lagging behind. Even cadavers, which medical schools also use to prepare doctors for surgery, don't represent a healthy human body or the diseased state of a hospital patient, said Smriti, who works as the research director.

The pair turned their kitchen into a printing lab and set to work, creating life-like models of human organs. They didn't have to go far after their first successes to find potential buyers — they just went to Starbucks. In a coffeeshop in the heart of the Medical Center, they talked loudly about their product until the neighborhood doctors and researchers took interest and gathered around.

Over the next few years, the Lazarus3D team pooled resources and contacts and, a summer after opening, they moved out of their kitchen and into an office. They now are a Capital Factory portfolio company and have partnerships with Texas Children's, Baylor College of Medicine, MD Anderson Cancer Center, and others, providing organs for specialized training — and the more they expand, the more they're able to prepare doctors for invasive, sometimes dangerous procedures.

"There are over 400,000 deaths annually in the U.S. due to medical error," Smriti says. "Not all of them are due to surgical mistakes, but all of these, nonetheless, were preventable."

The models can also be used for explaining to patients in a visual way what surgeries they're about to receive — the black and grey smears on an MRI scan might not actually help a patient understand much about what a surgeon is going to do to their body. In 2018, Lazarus3D won a contest with NASA on the potential for 3D printing organs in space, so that major surgeries might be performed there. And the printed organs can also be used by researchers to safely develop new surgery methods.

This year, the company grew to seven people and aims to expand even more to add to its sales and manufacturing teams. Having been funded mostly by friends and family investors, Lazarus3D plans enter its first equity round this year. They're raising $6 million.

"Every generation in medicine, people look back at what was done before and think 'Man, that was barbaric,'" Jacques said. "Fifty years from now, we're going to look back and think, 'Man, back then we used to just give someone a patient to learn how to do physical skills on? That seems crazy.'"

The new tech hub at Houston Methodist has trained hundreds of physicians in telemedicine practices. Natalie Harms/InnovationMap

Houston Methodist's recently opened its new Center for Innovation's Technology Hub in January, and the new wing has already been challenged by a global pandemic — one that's validating a real need for telemedicine.

The 3,500-square-foot tech testing ground was renovated from an 18-room patient wing and showcases new digital health technologies like virtual reality, ambient listening, wearables, voice control, and more. The hub was focused on giving tours to medical professionals and executives to get them excited about health tech, but in the middle of March, Josh Sol, administrative director of Innovation and Ambulatory Clinical Systems at Houston Methodist, says they saw a greater need for the space.

"We turned the technology hub into a training center where physicians could come on site and learn telemedicine," Sol says. "We had some foresight from our leadership who thought that telemedicine was going to be heavily utilized in order to protect our patients who might go into isolation based on the outbreak."

The hub has trained over 500 physicians — both onsite and digitally. Sol says that at the start of March, there were 66 providers offering virtual care, and by March 25, there were over 900 providers operating virtually. On March 12, Houston Methodist had 167 virtual visits, Sol says, and on March 25, they had 2,421. This new 2,000-plus number is now the daily average.

"Telemedicine is here to stay now with the rapid adoption that just happened," Sol says. "The landscape will change tremendously."

Another way new technology has affected doctors' day-to-day work has been through tele-rounding — especially when it comes to interacting with patients with COVID-19.

"We are putting iPads in those rooms with Vidyo as the video application, and our physicians can tele-visit into that room," Sol says.

It's all hands on deck for the tech hub so that physicians who need support have someone to turn to. Sol says the hub used to have a two-person support team and now there are eight people in that role.

Sol says the iPads are a key technology for tele-rounding and patient care — and they are working with Apple directly to secure inventory. But other tech tools, like an artificial intelligence-backed phone system, an online symptom checker, and chatbots are key to engaging with patients.

"We're looking at how we can get our patients in the right place at the right time," Sol says. "It's very confusing right now. We're hoping we can streamline that for our patients."

The hub was designed so that in case of emergency, the display hospital rooms could be transitioned to patient care rooms. Sol says that would be a call made by Roberta Schwartz, executive vice president and chief innovation officer of Houston Methodist Hospital.