Lazarus 3D is using 3D printing to help advance surgeons' skills. Photo via laz3d.com

It is no surprise that, when a company offered life-like bladders for medical training, Houston urologists jumped at the opportunity — many had to learn the surgery by operating on bell peppers.

This sort of produce practice is the traditional method for teaching surgeons. Before a doctor ever makes an incision on a living person, they'll practice surgery on food — slicing bananas open and sewing grapes back together.

But for a pair of Baylor College of Medicine-educated doctors, that didn't seem like sufficient prep for working with living bodies; fruit surgery was not fruitful enough. In 2014, Drs. Jacques Zaneveld and Smriti Agrawal Zaneveld founded Lazarus3D to build a better training model — and layer by layer, they created models of abs and ribs and even hearts with a 3D printer.

"We adapted pre-existing 3D printing technology in a novel proprietary way that allows us to, overnight, build soft, silicone or hydrogel models of human anatomy," says Jacques, who serves as CEO. "They can be treated just like real tissue."

This isn't 3D printing's foray in medicine. In 1999, doctors in North Carolina implanted the first 3D-printed bladder in human bodies — they covered the synthetic organs in the patients' cells so that their bodies accepted them. Since, researchers have continued to find uses for the technology in the field, printing other organs and making prosthetic limbs.

But the Lazarus3D founders felt like medical training was lagging behind. Even cadavers, which medical schools also use to prepare doctors for surgery, don't represent a healthy human body or the diseased state of a hospital patient, said Smriti, who works as the research director.

The pair turned their kitchen into a printing lab and set to work, creating life-like models of human organs. They didn't have to go far after their first successes to find potential buyers — they just went to Starbucks. In a coffeeshop in the heart of the Medical Center, they talked loudly about their product until the neighborhood doctors and researchers took interest and gathered around.

Over the next few years, the Lazarus3D team pooled resources and contacts and, a summer after opening, they moved out of their kitchen and into an office. They now are a Capital Factory portfolio company and have partnerships with Texas Children's, Baylor College of Medicine, MD Anderson Cancer Center, and others, providing organs for specialized training — and the more they expand, the more they're able to prepare doctors for invasive, sometimes dangerous procedures.

"There are over 400,000 deaths annually in the U.S. due to medical error," Smriti says. "Not all of them are due to surgical mistakes, but all of these, nonetheless, were preventable."

The models can also be used for explaining to patients in a visual way what surgeries they're about to receive — the black and grey smears on an MRI scan might not actually help a patient understand much about what a surgeon is going to do to their body. In 2018, Lazarus3D won a contest with NASA on the potential for 3D printing organs in space, so that major surgeries might be performed there. And the printed organs can also be used by researchers to safely develop new surgery methods.

This year, the company grew to seven people and aims to expand even more to add to its sales and manufacturing teams. Having been funded mostly by friends and family investors, Lazarus3D plans enter its first equity round this year. They're raising $6 million.

"Every generation in medicine, people look back at what was done before and think 'Man, that was barbaric,'" Jacques said. "Fifty years from now, we're going to look back and think, 'Man, back then we used to just give someone a patient to learn how to do physical skills on? That seems crazy.'"

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based HPE wins $931M contract to upgrade military data centers

defense data centers

Hewlett Packard Enterprise (HPE), based in Spring, Texas, which provides AI, cloud, and networking products and services, has received a $931 million contract to modernize data centers run by the federal Defense Information Systems Agency.

HPE says it will supply distributed hybrid multicloud technology to the federal agency, which provides combat support for U.S. troops. The project will feature HPE’s Private Cloud Enterprise and GreenLake offerings. It will allow DISA to scale and accelerate communications, improve AI and data analytics, boost IT efficiencies, reduce costs and more, according to a news release from HPE.

The contract comes after the completion of HPE’s test of distributed hybrid multicloud technology at Defense Information Systems Agency (DISA) data centers in Mechanicsburg, Pennsylvania, and Ogden, Utah. This technology is aimed at managing DISA’s IT infrastructure and resources across public and private clouds through one hybrid multicloud platform, according to Data Center Dynamics.

Fidelma Russo, executive vice president and general manager of hybrid cloud at HPE, said in a news release that the project will enable DISA to “deliver innovative, future-ready managed services to the agencies it supports that are operating across the globe.”

The platform being developed for DISA “is designed to mirror the look and feel of a public cloud, replicating many of the key features” offered by cloud computing businesses such as Amazon Web Services (AWS), Microsoft Azure and Google Cloud Platform, according to The Register.

In the 1990s, DISA consolidated 194 data centers into 16. According to The Register, these are the U.S. military’s most sensitive data centers.

More recently, in 2024, the Fort Meade, Maryland-based agency laid out a five-year strategy to “simplify the network globally with large-scale adoption of command IT environments,” according to Data Center Dynamics.

Astros and Rockets launch new streaming service for Houston sports fans

Sports Talk

Houston sports fans now have a way to watch their favorite teams without a cable or satellite subscription. Launched December 3, the Space City Home Network’s SCHN+ service allows consumers to watch the Houston Astros and Houston Rockets via iOS, Apple TV, Android, Amazon Fire TV, or web browser.

A subscription to SCHN+ allows sports fans to watch all Astros and Rockets games, as well as behind-the-scenes features and other on-demand content. It’s priced at $19.99 per month or $199.99 annually (plus tax). People who watch Space City Network Network via their existing cable or satellite service will be able to access SCHN+ at no additional charge.

As the Houston Chronicle notes, the Astros and Rockets were the only MLB and NBA teams not to offer a direct-to-consumer streaming option.

“We’re thrilled to offer another great option to ensure fans have access to watch games, and the SCHN+ streaming app makes it easier than ever to cheer on the Rockets,” Rockets alternate governor Patrick Fertitta said in a statement.

“Providing fans with a convenient way to watch their favorite teams, along with our network’s award-winning programming, was an essential addition. This season feels special, and we’re committed to exploring new ways to elevate our broadcasts for Rockets fans to enjoy.”

Astros owner Jim Crane echoed Feritta’s comments, adding, “Providing fans options on how they view our games is important as we continue to grow the game – we want to make it accessible to as large an audience as possible. We are looking forward to the 2026 season and more Astros fans watching our players compete for another championship.”

SCHN+ is available to customers in Texas; Louisiana; Arkansas; Oklahoma; and the following counties in New Mexico: Dona Ana, Eddy, Lea, Chaves, Roosevelt, Curry, Quay, Union, and Debaca. Fans outside these areas will need to subscribe to the NBA and MLB out-of-market services.

---

This article originally appeared on CultureMap.com.

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.