HIVE 3D is bringing science fiction to reality with this Texas project. Photo courtesy of HIVE 3D

While it may be true that the mother of invention is necessity, in today’s startup market, a more important factor is disruption. That’s where HIVE 3D, a Texas-based leader in constructing eco-friendly 3D printed homes, flourishes.

HIVE 3D was already revolutionizing the home-builder industry with its lightweight gantry system and mobile robotic arm system to 3D print its homes, but it took a giant leap further with its partnership with Utah-based Eco Material Technologies, North America’s leading producer of sustainable cement alternatives.

Together, they are building the world’s first near-zero-carbon, 3D-printed homes. Using Eco Material’s cement mixture called PozzoCEM Vite, which has 92 percent lower emissions than traditional concrete that can set in just a few minutes, they are focusing on providing a sustainable, cost-efficient and affordable housing solution.

“We want our homes to last 1,000 years,” Timothy Lankau, CEO, Hive 3D CEO, tells InnovationMap. “We want archaeologists to dig them up and wonder what they were. I mean, you go to the Parthenon in Rome, and it looks similar today to how it did 2,000 years ago because the materials are so stable.

“Concrete's just a very stable material. It doesn't change over time, and that's also why building with stone and masonry is important for the future. We think it's more sustainable because it's ultimately going to be better in terms of longevity.”

Key collaboration

Eco Material Technologies and HIVE 3D’s collaborative mission began through a mutual desire to develop sustainable and eco-friendly solutions for the construction industry.

“Both companies recognized the pressing need to reduce the environmental impact of traditional construction materials and processes and the need for affordable, high-quality housing,” says Grant Quasha, CEO of Eco Material Technologies. “The partnership between the two companies began when Eco Material Technologies reached out to HIVE 3D to explore the potential of incorporating their eco-friendly materials into 3D printed construction.

“HIVE 3D recognized the opportunity to combine their expertise with sustainable material solutions. The finished product of this collaboration is an eco-friendly construction material that can be 3D printed into various structural elements like walls, floors and columns.”

Proof of concept

Photo courtesy of HIVE 3D

HIVE 3D’s first full project, a 3,150-square-foot home located in Burton, Texas, was printed with a rotating team of just four people using PozzoSlag, which replaces 50 percent of the portland cement in concrete and has been used in roads and bridges in Texas for over a decade.

The home used several innovations that hadn’t been used in a 3D printed house before, including parametric wall designs, foamcrete wall insulation, and pigmented concrete layers.

“Our product is more sustainable because it utilizes proprietary technology that allows for the use of alternative materials to replace the clinker and processes from traditional cement that contribute to its high emissions,” says Quasha. “It is estimated that the portland cement industry contributes to 8 percent of global emissions annually, but by utilizing Eco Material Technologies' cement replacement solutions ... builders can significantly decrease their carbon emissions without compromising on the product's setting time or long-term strength."

Each ton of portland cement replaced by a ton of Eco Material's products, PozzoSlag or Pozzocem, reduces emissions by close to one ton, Quasha explains.

The Calais project, located in Round Top, Texas, behind the Halles, an antique shopping and design destination, broke ground in March 2023 and will feature a collection of tiny homes known as casitas, including studio, single-bedroom and two-bedroom models, ranging from 400 to 900 square feet.

“These small homes will serve as a model for affordable and eco-friendly housing throughout the country,” says Lankau. “We plan to build them at a speed and cost point that is unprecedented in the affordable housing space.

“Ultimately, we want to build houses at a disruptive price point. We want to be vertically integrated and put our homes on the market at a significant discount to market wherever they are. And by significant, we're talking 20 or 30 percent. That's our goal.”

The right resources

Photo courtesy of HIVE 3D

HIVE 3D worked with CyBe Construction to create a mobile construction 3D printer and mixing system that allows the printing mortar to be mixed onsite, which eliminates a significant amount of labor and time, which means those savings can be passed on to the consumer.

“We worked with a company called CyBe in the Netherlands to build a robotic arm, and that arm has about an 11-foot reach, and it can go all the way in a circle around itself,” says Lankau. “So, it drives around the foundation of the house, printing sections of the house at a time. So, it'll print a section, drive to the next section, and print the next section.

“So instead of having this many different materials and these many different traits, people that do all these different things, we have a machine that just uses one material and prints the wall.”

HIVE 3D has an internal engineer that works through all of the structural issues that may come up on projects and helps them build homes with monolithic, foot-thick concrete walls with rebar and steel supported in them.

According to Lankau, their 3D printed homes are tornado-proof, hurricane-proof, pest-proof, bullet-proof and can virtually withstand anything because of the sustainable materials used to build them.

“They're everything-proof,” says Lankau. “Just because of the natural strength of the concrete and the steel we use to create them, they can support millions of pounds. So, it's actually a stronger material than a typical house. By a factor of 100. Like I said, it's bulletproof and tornado-proof. You could drive a car into it, and it would total the car. I mean, it's a very, very sturdy structure.”

A bright future

Photo courtesy of HIVE 3D

Moving forward, HIVE 3D would like to continue to innovate and advance its 3D printing technology by leaps and bounds.

“The science fiction goal here, which is maybe a five-year goal, is to be able to drive onto a site, press a button, and watch the robots work,” says Lankau. “We want to be a significant home builder. So, in five years, we want to be building a lot of houses quickly and affordably and we want to continue to automate more and more of the process.”

Right now, there is no formal process for commissioning a HIVE 3D printed home. Perspective customers are directed to the website, then put in a request to build a home, go through a screening process and if the project is a good fit, they'll put that project into their pipeline.

“We can build them quickly. It's just a matter of getting to them,” says Lankau. “We're also going to be doing some developments in Texas probably to start. We also have some international things that we'll be looking into next year. But right now, it's mostly in Texas. We'll be building some developments and putting those homes on the market. We hope to have some out this year and then a bigger chunk next year as we get more machines working. Those will be announced on our website.”

As HIVE 3D continues to find ways to scale its business model, there is a laser focus on the diminishing idea of the “American Dream,” where young families are able to purchase their first home. With the rising costs of supplies and labor, those families have been priced out of the market.

“That’s almost all we think about,” says Lankau. “Homeownership and that part of the American Dream is really struggling right now because the affordability gap between what the average person makes and what the average house on the market costs is just getting wider and wider.

According to Lankau, there are a lot of options to address the supply gap, but there aren’t an equal number of options to solve the affordability issue. Their goal is to find the best ways to deliver real cost savings over both traditional construction and other automated technologies.

“About three weeks ago, we kind of hit the inflection point in our current project where we printed a little house in three days. The cost of the house was what we wanted the cost to be, which is a disruptive amount less than what you could do traditionally or with any other construction technique. And we said, okay, now we're far enough along. We have this system. It's a scalable system. So, we're right now putting some capital together to go out and buy, build more of these machines and get out and start doing these truly affordable housing projects. Because that's where our heart is. Our heart's on the affordable side.”

HIVE 3D’s project in Burton, Texas isn’t available for sell yet, but it will be listed on Airbnb for interested customers to go and experience when it’s completed.

Additionally, the Casitas units in Round Top will be short-term rentals for festival patrons.

“We’ll go directly to market with our next projects,” says Lankau. “And then we'll sell that big house property in Burton at the end of this year.”

Rice University announced a new partnership between two tech companies to allow for the community to have access to prototyping tools. Photo via Rice

Rice University taps 2 partners to increase access to prototyping technology

3d printing upgrade

A Houston university has entered into partnerships with two businesses to provide on-site prototyping and additive manufacturing services and equipment.

Rice University’s Office of Innovation announced its partnerships with Redwood City, California-based Carbon and Austin, Texas-based manufacturer TyRex Group today. The arrangement includes making additive manufacturing equipment, prototyping, and design facilities and services available on campus.

“Collaboration is the fastest way to get technology out of the lab and into the real world,” says Paul Cherukuri, vice president of innovation at Rice, in a news release, adding that 3D printing "allows you to create things you couldn't otherwise make, and it lets you go very quickly from an idea to a prototype and downstream to a product.”

Carbon's platform — which includes end-use materials, software, and 3D printers — allows users to rapidly design and develop products quickly. At the same time, TyRex’s expertise with manufacturing complements Carbon's technology. Together, the two entities provide the support for turning “proof-of-principle” ideas into viable prototypes.

Cherukuri has first-hand experience with these two businesses, per the release. In 2021, he pitched an idea for 3D-printable smart helmets to the Office of Naval Research. The Rice Smart Helmet reimagines a military helmet that has both protective equipment and a wearable technology platform. The Navy's funding allowed Cherukuri to purchase "two of Carbon’s industrial-grade 3D printers, an M2 model that was installed at Rice for smaller prints and a top-of-the-line, large-format L1 that was installed at TyRex’s Austin facility almost 170 miles from the Rice campus," reads the release.

Cherukuri says the technology allowed the project to “go seamlessly from idea to production,” and he wants to replicate that experience for other labs at Rice. “If I design on the L1, I can hit print and print 1,000 of them, and that is a capability we did not have before,” Cherukuri says in the release.

The technology will be available at the Rice Nexus, based in the Ion and expected to open this summer. Cherukuri recently shared more details on and the potential of the hub on the Houston Innovators Podcast.

"We've got so much technology in our labs that we've never shared with the world," Cherukuri says. "We're going to demonstrate that in the Ion."

The Rice Smart Helmet is an example of the work that can be done through this 3D printing partnership. Photo via Rice.edu

Two innovators are bringing additive manufacturing opportunities to Houston. Image via Getty Images

New venture brings next-generation additive manufacturing to Houston

new to hou

Last year, Sean Harkins introduced his friend Brien Beach to the world of additive manufacturing, and together the duo saw a business opportunity not only for themselves — but also for all of Houston.

Harkins had been working in 3D printing and additive manufacturing — the process of creating an object by building it one layer at a time — for the last decade and studied industrial design at the University of Houston. Working together, Harkins and Beach launched AmPd Labs, Houston’s next-generation additive manufacturing facility for industrial design and production.

“I met Brien through a mutual friend and we started discussing this idea of an additive manufacturing center in Houston,” says Harkins, president of AmPd Labs.

AmPD Lab’s focus is to break down traditional engineering design constraints, forcing the question “can this be additively manufactured?” The facility uniquely enables the printing of metals through metal binder jetting technology.

Last week, the company opened its first dedicated space near the Heights that was built to be the production studio as well as a place to bring in potential partners interested in additive manufacturing.

“There is a hill to climb with market acceptance, but we want to be the champions of that and Houston is just a great place to start this because it's the largest industrial city in America and there's so much industry here and there's tons of engineers in this community,” says Beach. “Houston is such a business-forward place. A ‘how can I help you’ type of business place.”

In addition to the launch of the new facility, Beach and Harkins visualize they will soon create a trade-school-type concept of “Digital Craftsmen” for additive manufacturing and offer an educational platform to help build a skilled workforce in this space.

“AM is not a fit for everything, but by working together, we can find those parts and products in which an AM solution can give you an operational or competitive advantage,” says Beach. “We will work with you through the design process, provide samples for testing, work through parts quality and qualification, and eventually find some products that you can permanently implement into your business.”

AmPd Labs will focus its business on these dedicated areas of impact:

  • Manufacturing technology choice
  • Part design
  • Material selection
  • Material performance
  • Assembly and workflow assessment
  • Business model impact
  • Supply chain impact
  • Increased data generation
  • Sales and marketing approach

Sean Harkins and Brien Beach opened AmPd Labs' space in the Heights last week. Images via ampdlabs.llc

This innovative Houston company has the national spotlight this week. Courtesy of re:3D

Houston 3D printing company selected inaugural competition

winner, winner

A Houston company has been announced among the winners of an inaugural seed fund expo competition.

Twelve startups were announced across four categories in the U.S. Small Business Administration's inaugural America’s Seed Fund Startup Expo 2022, which is taking place virtually Wednesday, May 25, from 11:30 am to 3:30 pm. Each of the 12 companies have developed innovative technologies with the help of SBIR grants.

“Every day, in communities across America, entrepreneurs are solving our nation’s most pressing challenges from climate change to feeding and healing the world. The SBA is committed to helping ensure that those ideas receive the necessary support from federal programs and innovation ecosystems so that they can commercialize and grow into resilient businesses,” says Administrator Isabella Casillas Guzman in a news release.

“With the launch of America's Seed Fund Expo, we will showcase exceptional entrepreneurs who have leveraged federal research and development funding through the SBIR Program in key industries and connect them to resources to advance their game-changing innovations right here in America,” she continues.

Houston-based Re:3D is among the companies selected to present at the expo. The complete list of participating companies is as follows:

  • AgTech and Food Security
    • General Probiotics (Saint Paul, MN)
    • Nucleic Sensing Systems (Saint Paul, MN)
    • Shellfish Solutions d/b/a Blue Trace (Castine, ME)
  • Climate and Energy
    • Amorphic Tech (Allentown, PA)
    • FGC Plasma Solutions (Middleton, MA)
    • Hydroplane (Lancaster, CA)
  • National Security and Defense
    • BadVR (Pacoima, CA)
    • Enduralock (Lenexa, KS)
    • PSYONIC (Champaign, IL)
  • Supply Chain Resiliency
    • Chromatic 3D Materials (Golden Valley, MN)
    • Delta Development Team (Tucson, AZ)
    • Re:3D (Houston, TX)

“The giants of future industries so often start as small business startups with big ideas," says Bailey DeVries, associate administrator of the office of investment and innovation, in the news release. "We know the public and private sectors must work together to nurture these small businesses with big ideas over many years so they may sustain and grow. America’s Seed Fund Startup Expo will lift up big ideas and provide a platform for our national innovation community to support the businesses of tomorrow."

The event is free to attend virtually, and anyone can register online at https://bit.ly/SeedFundExpoRSVP. The America’s Seed Fund is among the Small Business Innovation Research and Small Business Technology Transfer programs and is collaborates with 11 federal agencies, that collectively support more than $4 billion a year in federal research and development funding.

Roboze has closed its latest round of funding. Photo courtesy of Roboze

Houston 3D printing company closes latest round of funding, plans to hire

money moves

Roboze — an Italian high-performance 3D printing company with its U.S. headquarters in Houston — closed a multimillion-dollar round of funding this month with investments from an international group of leaders from diverse backgrounds.

Investors include Nova Capital, Lagfin, Andrea Guerra, Luigi De Vecchi, Roberto Ferraresi, Luca Giacometti, Denis Faccioli and others, according to a statement.

“We are honored to have a group of investors of this caliber, who strongly believe in the vision of Roboze and in the change of production paradigm that our technology is enabling by replacing metals and producing parts without wasting raw materials," Alessio Lorusso, founder and CEO of Roboze, said in a statement.

Roboze aims to put the funds towards the research and development of a new "super material" developed in the company's R&D facility in Italy, where the company is also building a new chemistry lab.

The company added that it will also be implementing an aggressive hiring plan in 2022, hiring 60 experts in the next 12 to 18 months in fields such as materials science, chemistry, business development, aerospace, medical devices, and field and applications engineering. Half of the new jobs will be based in the U.S. while the others are slated to be located in Italy and Germany.

Roboze specializes in manufacturing industrial 3D printing technology, such as its ARGO1000, which the company says is the largest printer of its kind. Through a process called Metal Replacement 3D Printing, the company uses super polymers and composites like PEEK and Carbon PEEK to create large-scale, end-use parts for an array of industries—from aeronautics equipment to medical manufacturing.

The company currently works with GE, Bosch, and Airbus, among others, and announced in the statement that manufacturing giant Siemens Energy acquired its first 3D printer from the company.

"We think additive manufacturing is playing a key role in digitalization and cost out in the energy sector. At Siemens Energy we evaluated many companies and found that Roboze technology for high temperature polymers has met our engineering qualification and expectations," Andrew Bridges, Service Frame Owner at Siemens Energy, said in a statement. "As a result, we acquired our first machine and look forward to expanding our relationship with Roboze."

Rice University bioengineers are designing a vascularized, insulin-producing implant for Type 1 diabetes. Photo by Jeff Fitlow courtesy of Rice University

Rice University bioengineers create insulin-producing medical device

health tech

A team of bioengineers at Houston's own Rice University have created an implant that can produce insulin for Type 1 diabetics. The device is being created by using 3D printing and smart biomaterials.

Omid Veiseh, an assistant professor of bioengineering, and Jordan Miller, associate professor of bioengineering, have been working on the project for three years and have received support from JDRF by way of a grant. Veiseh has a decade of experience developing biomaterials that protect implanted cell therapies from the immune system an Miller has spent more than 15 years specializing in 3D print tissues with vasculature, or networks of blood vessels.

"If we really want to recapitulate what the pancreas normally does, we need vasculature," Veiseh says in a news release. "And that's the purpose of this grant with JDRF. The pancreas naturally has all these blood vessels, and cells are organized in particular ways in the pancreas. Jordan and I want to print in the same orientation that exists in nature."

The challenge with Type 1 diabetes is balancing insulin intake, and studies estimate that less than a third of Type 1 diabetics in the U.S. are able to achieve target blood glucose levels consistently. Veiseh and Miller are working toward demonstrating that their implants can properly regulate blood glucose levels of diabetic mice for at least six months. To do that, they'll need to give their engineered beta cells the ability to respond to rapid changes in blood sugar levels.

"We must get implanted cells in close proximity to the bloodstream so beta cells can sense and respond quickly to changes in blood glucose," Miller says, adding that the insulin-producing cells should be no more than 100 microns from a blood vessel. "We're using a combination of pre-vascularization through advanced 3D bioprinting and host-mediated vascular remodeling to give each implant several shots at host integration."

Another challenge these experts are facing is a potential delay that can happen if the implant is too slow to respond to high or low blood sugar levels.

"Addressing that delay is a huge problem in this field," Veiseh says. "When you give the mouse — and ultimately a human — a glucose challenge that mimics eating a meal, how long does it take that information to reach our cells, and how quickly does the insulin come out?"

By incorporating blood vessels in their implant, he and Miller hope to allow their beta-cell tissues to behave in a way that more closely mimics the natural behavior of the pancreas.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston space tech company snags $9.5M contract, sets launch date for lunar mission

green light

Business at Houston-based space exploration company Intuitive Machines is taking off on two fronts.

First, Intuitive Machines has landed a nearly $9.5 million Air Force contract to develop technology for NASA’s Gateway project, the first space station that will orbit the moon. Specifically, the technology will support a high-powered nuclear fission system that will supply electricity for satellites, bypassing the need for power from solar, battery, or fuel-cell sources.

“As space exploration ventures become more ambitious and diverse, the need for efficient and reliable power sources in space is paramount,” Pete McGrath, vice president of business development at Intuitive Machines, says in a news release. “Developing the ability to expand power sources beyond solar, which requires heavy battery storage, could remove the burden of constantly worrying about a spacecraft’s arrays relative to the sun, and potentially deliver long-term stability for satellites that would otherwise lose power over time.”

Second, Intuitive Machines has set January window for the launch of its IM-1 lunar mission in conjunction with private aerospace company SpaceX. The liftoff is targeted for a multiday window that opens January 12, 2024.

“There are inherent challenges of lunar missions; schedule changes and mission adjustments are a natural consequence of pioneering lunar exploration,” Steve Altemus, co-founder, president, and CEO of Intuitive Machines, says in a news release. “Receiving a launch window and the required approvals to fly is a remarkable achievement, and the schedule adjustment is a small price to pay for making history.”

The IM-1 mission will be the company’s first attempted lunar landing as part of NASA’s commercial payload initiative.

Intuitive Machines went public earlier this year via SPAC. Co-founder Tim Crain shared a bit of the origin story of the company on a recent episode of the Houston Innovators Podcast.


Houston sustainable chemicals unicorn to build Midwestern biomanufacturing facility

making moves

Solugen has scored a partnership with a global company to build a biomanufacturing facility adjacent to an existing corn complex in Marshall, Minnesota.

Solugen, a Houston company that's designed a process that converts plant-derived substances into essential materials, has announced its newest strategic partnership with sustainable solutions company ADM (NYSE:ADM). The partnership includes plans for Solugen to build a 500,000-square-foot biomanufacturing facility next to an existing ADM facility in the Midwest. The two companies will collaborate on producing biomaterials to replace fossil fuel-based products.

“The strategic partnership with ADM will allow Solugen to bring our chemienzymatic process to a commercial scale and meet existing customer demand for our high-performance, cost-competitive, sustainable products,” Gaurab Chakrabarti, co-founder and CEO of Solugen, says in a news release. “As one of the few scaled-up and de-risked biomanufacturing assets in the country, Solugen’s Bioforge platform is helping bolster domestic capabilities and supply chains that are critical in ensuring the U.S. reaches its ambitious climate targets.”

The company plans to begin on-site construction early next year, with plans to startup in the first half of 2025. The project should create at least 40 permanent jobs and 100 temporary construction positions.

“Sustainability is one of the enduring global trends powering ADM’s growth and underpinning the strategic evolution of our Carbohydrate Solutions business,” Chris Cuddy, president of ADM’s Carbohydrate Solutions business, says in the release. “ADM is one of the largest dextrose producers in the world, and this strategic partnership will allow us to further diversify our product stream as we continue to support plant-based solutions spanning sustainable packaging, pharma, plant health, construction, fermentation, and home and personal care.”

Founded in 2016 by Chakrabarti and Sean Hunt, Solugen's carbon-negative molecule factory, named the Bioforge, uses its chemienzymatic process in converting plant-sourced substances into essential materials that can be used instead of fossil fuels. The manufacturing process is carbon neutral, and Solugen has raised over $600 million from investors that believe in the technology's potential.

“The initial phase of the project will significantly increase Solugen’s manufacturing capacity, which is critical for commercializing our existing line of molecules and kicks off plans for a multi-phase large-scale U.S. Bioforge buildout,” Hunt, CTO of Solugen, says in the release. “The increase in capacity will also free up our Houston operation for research and development efforts into additional molecules and market applications.”

The project should create at least 40 permanent jobs and 100 temporary construction positions.

"As a community with a strong foundation of agriculture and innovation, we look forward to welcoming Solugen to Marshall. This industry-leading facility will serve as a powerful economic driver for the city, creating new jobs and diversifying our industry,” City of Marshall Mayor Bob Byrnes says in the statement. "We are thankful for ADM’s longstanding commitment and impact to Marshall, which has paved the way for this remarkable partnership and continues to further economic growth to our region."

It's the second major company partnership announcement Solugen has made this month, with a new arrangement with Sasol being secured last week.

------

This article originally ran on EnergyCapital.