HIVE 3D is bringing science fiction to reality with this Texas project. Photo courtesy of HIVE 3D

While it may be true that the mother of invention is necessity, in today’s startup market, a more important factor is disruption. That’s where HIVE 3D, a Texas-based leader in constructing eco-friendly 3D printed homes, flourishes.

HIVE 3D was already revolutionizing the home-builder industry with its lightweight gantry system and mobile robotic arm system to 3D print its homes, but it took a giant leap further with its partnership with Utah-based Eco Material Technologies, North America’s leading producer of sustainable cement alternatives.

Together, they are building the world’s first near-zero-carbon, 3D-printed homes. Using Eco Material’s cement mixture called PozzoCEM Vite, which has 92 percent lower emissions than traditional concrete that can set in just a few minutes, they are focusing on providing a sustainable, cost-efficient and affordable housing solution.

“We want our homes to last 1,000 years,” Timothy Lankau, CEO, Hive 3D CEO, tells InnovationMap. “We want archaeologists to dig them up and wonder what they were. I mean, you go to the Parthenon in Rome, and it looks similar today to how it did 2,000 years ago because the materials are so stable.

“Concrete's just a very stable material. It doesn't change over time, and that's also why building with stone and masonry is important for the future. We think it's more sustainable because it's ultimately going to be better in terms of longevity.”

Key collaboration

Eco Material Technologies and HIVE 3D’s collaborative mission began through a mutual desire to develop sustainable and eco-friendly solutions for the construction industry.

“Both companies recognized the pressing need to reduce the environmental impact of traditional construction materials and processes and the need for affordable, high-quality housing,” says Grant Quasha, CEO of Eco Material Technologies. “The partnership between the two companies began when Eco Material Technologies reached out to HIVE 3D to explore the potential of incorporating their eco-friendly materials into 3D printed construction.

“HIVE 3D recognized the opportunity to combine their expertise with sustainable material solutions. The finished product of this collaboration is an eco-friendly construction material that can be 3D printed into various structural elements like walls, floors and columns.”

Proof of concept

Photo courtesy of HIVE 3D

HIVE 3D’s first full project, a 3,150-square-foot home located in Burton, Texas, was printed with a rotating team of just four people using PozzoSlag, which replaces 50 percent of the portland cement in concrete and has been used in roads and bridges in Texas for over a decade.

The home used several innovations that hadn’t been used in a 3D printed house before, including parametric wall designs, foamcrete wall insulation, and pigmented concrete layers.

“Our product is more sustainable because it utilizes proprietary technology that allows for the use of alternative materials to replace the clinker and processes from traditional cement that contribute to its high emissions,” says Quasha. “It is estimated that the portland cement industry contributes to 8 percent of global emissions annually, but by utilizing Eco Material Technologies' cement replacement solutions ... builders can significantly decrease their carbon emissions without compromising on the product's setting time or long-term strength."

Each ton of portland cement replaced by a ton of Eco Material's products, PozzoSlag or Pozzocem, reduces emissions by close to one ton, Quasha explains.

The Calais project, located in Round Top, Texas, behind the Halles, an antique shopping and design destination, broke ground in March 2023 and will feature a collection of tiny homes known as casitas, including studio, single-bedroom and two-bedroom models, ranging from 400 to 900 square feet.

“These small homes will serve as a model for affordable and eco-friendly housing throughout the country,” says Lankau. “We plan to build them at a speed and cost point that is unprecedented in the affordable housing space.

“Ultimately, we want to build houses at a disruptive price point. We want to be vertically integrated and put our homes on the market at a significant discount to market wherever they are. And by significant, we're talking 20 or 30 percent. That's our goal.”

The right resources

Photo courtesy of HIVE 3D

HIVE 3D worked with CyBe Construction to create a mobile construction 3D printer and mixing system that allows the printing mortar to be mixed onsite, which eliminates a significant amount of labor and time, which means those savings can be passed on to the consumer.

“We worked with a company called CyBe in the Netherlands to build a robotic arm, and that arm has about an 11-foot reach, and it can go all the way in a circle around itself,” says Lankau. “So, it drives around the foundation of the house, printing sections of the house at a time. So, it'll print a section, drive to the next section, and print the next section.

“So instead of having this many different materials and these many different traits, people that do all these different things, we have a machine that just uses one material and prints the wall.”

HIVE 3D has an internal engineer that works through all of the structural issues that may come up on projects and helps them build homes with monolithic, foot-thick concrete walls with rebar and steel supported in them.

According to Lankau, their 3D printed homes are tornado-proof, hurricane-proof, pest-proof, bullet-proof and can virtually withstand anything because of the sustainable materials used to build them.

“They're everything-proof,” says Lankau. “Just because of the natural strength of the concrete and the steel we use to create them, they can support millions of pounds. So, it's actually a stronger material than a typical house. By a factor of 100. Like I said, it's bulletproof and tornado-proof. You could drive a car into it, and it would total the car. I mean, it's a very, very sturdy structure.”

A bright future

Photo courtesy of HIVE 3D

Moving forward, HIVE 3D would like to continue to innovate and advance its 3D printing technology by leaps and bounds.

“The science fiction goal here, which is maybe a five-year goal, is to be able to drive onto a site, press a button, and watch the robots work,” says Lankau. “We want to be a significant home builder. So, in five years, we want to be building a lot of houses quickly and affordably and we want to continue to automate more and more of the process.”

Right now, there is no formal process for commissioning a HIVE 3D printed home. Perspective customers are directed to the website, then put in a request to build a home, go through a screening process and if the project is a good fit, they'll put that project into their pipeline.

“We can build them quickly. It's just a matter of getting to them,” says Lankau. “We're also going to be doing some developments in Texas probably to start. We also have some international things that we'll be looking into next year. But right now, it's mostly in Texas. We'll be building some developments and putting those homes on the market. We hope to have some out this year and then a bigger chunk next year as we get more machines working. Those will be announced on our website.”

As HIVE 3D continues to find ways to scale its business model, there is a laser focus on the diminishing idea of the “American Dream,” where young families are able to purchase their first home. With the rising costs of supplies and labor, those families have been priced out of the market.

“That’s almost all we think about,” says Lankau. “Homeownership and that part of the American Dream is really struggling right now because the affordability gap between what the average person makes and what the average house on the market costs is just getting wider and wider.

According to Lankau, there are a lot of options to address the supply gap, but there aren’t an equal number of options to solve the affordability issue. Their goal is to find the best ways to deliver real cost savings over both traditional construction and other automated technologies.

“About three weeks ago, we kind of hit the inflection point in our current project where we printed a little house in three days. The cost of the house was what we wanted the cost to be, which is a disruptive amount less than what you could do traditionally or with any other construction technique. And we said, okay, now we're far enough along. We have this system. It's a scalable system. So, we're right now putting some capital together to go out and buy, build more of these machines and get out and start doing these truly affordable housing projects. Because that's where our heart is. Our heart's on the affordable side.”

HIVE 3D’s project in Burton, Texas isn’t available for sell yet, but it will be listed on Airbnb for interested customers to go and experience when it’s completed.

Additionally, the Casitas units in Round Top will be short-term rentals for festival patrons.

“We’ll go directly to market with our next projects,” says Lankau. “And then we'll sell that big house property in Burton at the end of this year.”

Rice University announced a new partnership between two tech companies to allow for the community to have access to prototyping tools. Photo via Rice

Rice University taps 2 partners to increase access to prototyping technology

3d printing upgrade

A Houston university has entered into partnerships with two businesses to provide on-site prototyping and additive manufacturing services and equipment.

Rice University’s Office of Innovation announced its partnerships with Redwood City, California-based Carbon and Austin, Texas-based manufacturer TyRex Group today. The arrangement includes making additive manufacturing equipment, prototyping, and design facilities and services available on campus.

“Collaboration is the fastest way to get technology out of the lab and into the real world,” says Paul Cherukuri, vice president of innovation at Rice, in a news release, adding that 3D printing "allows you to create things you couldn't otherwise make, and it lets you go very quickly from an idea to a prototype and downstream to a product.”

Carbon's platform — which includes end-use materials, software, and 3D printers — allows users to rapidly design and develop products quickly. At the same time, TyRex’s expertise with manufacturing complements Carbon's technology. Together, the two entities provide the support for turning “proof-of-principle” ideas into viable prototypes.

Cherukuri has first-hand experience with these two businesses, per the release. In 2021, he pitched an idea for 3D-printable smart helmets to the Office of Naval Research. The Rice Smart Helmet reimagines a military helmet that has both protective equipment and a wearable technology platform. The Navy's funding allowed Cherukuri to purchase "two of Carbon’s industrial-grade 3D printers, an M2 model that was installed at Rice for smaller prints and a top-of-the-line, large-format L1 that was installed at TyRex’s Austin facility almost 170 miles from the Rice campus," reads the release.

Cherukuri says the technology allowed the project to “go seamlessly from idea to production,” and he wants to replicate that experience for other labs at Rice. “If I design on the L1, I can hit print and print 1,000 of them, and that is a capability we did not have before,” Cherukuri says in the release.

The technology will be available at the Rice Nexus, based in the Ion and expected to open this summer. Cherukuri recently shared more details on and the potential of the hub on the Houston Innovators Podcast.

"We've got so much technology in our labs that we've never shared with the world," Cherukuri says. "We're going to demonstrate that in the Ion."

The Rice Smart Helmet is an example of the work that can be done through this 3D printing partnership. Photo via Rice.edu

Two innovators are bringing additive manufacturing opportunities to Houston. Image via Getty Images

New venture brings next-generation additive manufacturing to Houston

new to hou

Last year, Sean Harkins introduced his friend Brien Beach to the world of additive manufacturing, and together the duo saw a business opportunity not only for themselves — but also for all of Houston.

Harkins had been working in 3D printing and additive manufacturing — the process of creating an object by building it one layer at a time — for the last decade and studied industrial design at the University of Houston. Working together, Harkins and Beach launched AmPd Labs, Houston’s next-generation additive manufacturing facility for industrial design and production.

“I met Brien through a mutual friend and we started discussing this idea of an additive manufacturing center in Houston,” says Harkins, president of AmPd Labs.

AmPD Lab’s focus is to break down traditional engineering design constraints, forcing the question “can this be additively manufactured?” The facility uniquely enables the printing of metals through metal binder jetting technology.

Last week, the company opened its first dedicated space near the Heights that was built to be the production studio as well as a place to bring in potential partners interested in additive manufacturing.

“There is a hill to climb with market acceptance, but we want to be the champions of that and Houston is just a great place to start this because it's the largest industrial city in America and there's so much industry here and there's tons of engineers in this community,” says Beach. “Houston is such a business-forward place. A ‘how can I help you’ type of business place.”

In addition to the launch of the new facility, Beach and Harkins visualize they will soon create a trade-school-type concept of “Digital Craftsmen” for additive manufacturing and offer an educational platform to help build a skilled workforce in this space.

“AM is not a fit for everything, but by working together, we can find those parts and products in which an AM solution can give you an operational or competitive advantage,” says Beach. “We will work with you through the design process, provide samples for testing, work through parts quality and qualification, and eventually find some products that you can permanently implement into your business.”

AmPd Labs will focus its business on these dedicated areas of impact:

  • Manufacturing technology choice
  • Part design
  • Material selection
  • Material performance
  • Assembly and workflow assessment
  • Business model impact
  • Supply chain impact
  • Increased data generation
  • Sales and marketing approach

Sean Harkins and Brien Beach opened AmPd Labs' space in the Heights last week. Images via ampdlabs.llc

This innovative Houston company has the national spotlight this week. Courtesy of re:3D

Houston 3D printing company selected inaugural competition

winner, winner

A Houston company has been announced among the winners of an inaugural seed fund expo competition.

Twelve startups were announced across four categories in the U.S. Small Business Administration's inaugural America’s Seed Fund Startup Expo 2022, which is taking place virtually Wednesday, May 25, from 11:30 am to 3:30 pm. Each of the 12 companies have developed innovative technologies with the help of SBIR grants.

“Every day, in communities across America, entrepreneurs are solving our nation’s most pressing challenges from climate change to feeding and healing the world. The SBA is committed to helping ensure that those ideas receive the necessary support from federal programs and innovation ecosystems so that they can commercialize and grow into resilient businesses,” says Administrator Isabella Casillas Guzman in a news release.

“With the launch of America's Seed Fund Expo, we will showcase exceptional entrepreneurs who have leveraged federal research and development funding through the SBIR Program in key industries and connect them to resources to advance their game-changing innovations right here in America,” she continues.

Houston-based Re:3D is among the companies selected to present at the expo. The complete list of participating companies is as follows:

  • AgTech and Food Security
    • General Probiotics (Saint Paul, MN)
    • Nucleic Sensing Systems (Saint Paul, MN)
    • Shellfish Solutions d/b/a Blue Trace (Castine, ME)
  • Climate and Energy
    • Amorphic Tech (Allentown, PA)
    • FGC Plasma Solutions (Middleton, MA)
    • Hydroplane (Lancaster, CA)
  • National Security and Defense
    • BadVR (Pacoima, CA)
    • Enduralock (Lenexa, KS)
    • PSYONIC (Champaign, IL)
  • Supply Chain Resiliency
    • Chromatic 3D Materials (Golden Valley, MN)
    • Delta Development Team (Tucson, AZ)
    • Re:3D (Houston, TX)

“The giants of future industries so often start as small business startups with big ideas," says Bailey DeVries, associate administrator of the office of investment and innovation, in the news release. "We know the public and private sectors must work together to nurture these small businesses with big ideas over many years so they may sustain and grow. America’s Seed Fund Startup Expo will lift up big ideas and provide a platform for our national innovation community to support the businesses of tomorrow."

The event is free to attend virtually, and anyone can register online at https://bit.ly/SeedFundExpoRSVP. The America’s Seed Fund is among the Small Business Innovation Research and Small Business Technology Transfer programs and is collaborates with 11 federal agencies, that collectively support more than $4 billion a year in federal research and development funding.

Roboze has closed its latest round of funding. Photo courtesy of Roboze

Houston 3D printing company closes latest round of funding, plans to hire

money moves

Roboze — an Italian high-performance 3D printing company with its U.S. headquarters in Houston — closed a multimillion-dollar round of funding this month with investments from an international group of leaders from diverse backgrounds.

Investors include Nova Capital, Lagfin, Andrea Guerra, Luigi De Vecchi, Roberto Ferraresi, Luca Giacometti, Denis Faccioli and others, according to a statement.

“We are honored to have a group of investors of this caliber, who strongly believe in the vision of Roboze and in the change of production paradigm that our technology is enabling by replacing metals and producing parts without wasting raw materials," Alessio Lorusso, founder and CEO of Roboze, said in a statement.

Roboze aims to put the funds towards the research and development of a new "super material" developed in the company's R&D facility in Italy, where the company is also building a new chemistry lab.

The company added that it will also be implementing an aggressive hiring plan in 2022, hiring 60 experts in the next 12 to 18 months in fields such as materials science, chemistry, business development, aerospace, medical devices, and field and applications engineering. Half of the new jobs will be based in the U.S. while the others are slated to be located in Italy and Germany.

Roboze specializes in manufacturing industrial 3D printing technology, such as its ARGO1000, which the company says is the largest printer of its kind. Through a process called Metal Replacement 3D Printing, the company uses super polymers and composites like PEEK and Carbon PEEK to create large-scale, end-use parts for an array of industries—from aeronautics equipment to medical manufacturing.

The company currently works with GE, Bosch, and Airbus, among others, and announced in the statement that manufacturing giant Siemens Energy acquired its first 3D printer from the company.

"We think additive manufacturing is playing a key role in digitalization and cost out in the energy sector. At Siemens Energy we evaluated many companies and found that Roboze technology for high temperature polymers has met our engineering qualification and expectations," Andrew Bridges, Service Frame Owner at Siemens Energy, said in a statement. "As a result, we acquired our first machine and look forward to expanding our relationship with Roboze."

Rice University bioengineers are designing a vascularized, insulin-producing implant for Type 1 diabetes. Photo by Jeff Fitlow courtesy of Rice University

Rice University bioengineers create insulin-producing medical device

health tech

A team of bioengineers at Houston's own Rice University have created an implant that can produce insulin for Type 1 diabetics. The device is being created by using 3D printing and smart biomaterials.

Omid Veiseh, an assistant professor of bioengineering, and Jordan Miller, associate professor of bioengineering, have been working on the project for three years and have received support from JDRF by way of a grant. Veiseh has a decade of experience developing biomaterials that protect implanted cell therapies from the immune system an Miller has spent more than 15 years specializing in 3D print tissues with vasculature, or networks of blood vessels.

"If we really want to recapitulate what the pancreas normally does, we need vasculature," Veiseh says in a news release. "And that's the purpose of this grant with JDRF. The pancreas naturally has all these blood vessels, and cells are organized in particular ways in the pancreas. Jordan and I want to print in the same orientation that exists in nature."

The challenge with Type 1 diabetes is balancing insulin intake, and studies estimate that less than a third of Type 1 diabetics in the U.S. are able to achieve target blood glucose levels consistently. Veiseh and Miller are working toward demonstrating that their implants can properly regulate blood glucose levels of diabetic mice for at least six months. To do that, they'll need to give their engineered beta cells the ability to respond to rapid changes in blood sugar levels.

"We must get implanted cells in close proximity to the bloodstream so beta cells can sense and respond quickly to changes in blood glucose," Miller says, adding that the insulin-producing cells should be no more than 100 microns from a blood vessel. "We're using a combination of pre-vascularization through advanced 3D bioprinting and host-mediated vascular remodeling to give each implant several shots at host integration."

Another challenge these experts are facing is a potential delay that can happen if the implant is too slow to respond to high or low blood sugar levels.

"Addressing that delay is a huge problem in this field," Veiseh says. "When you give the mouse — and ultimately a human — a glucose challenge that mimics eating a meal, how long does it take that information to reach our cells, and how quickly does the insulin come out?"

By incorporating blood vessels in their implant, he and Miller hope to allow their beta-cell tissues to behave in a way that more closely mimics the natural behavior of the pancreas.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University launches hub in India to drive education, tech innovation abroad

global mission

Rice University is launching Rice Global India, which is a strategic initiative to expand India’s rapidly growing education and technology sectors.

“India is a country of tremendous opportunity, one where we see the potential to make a meaningful impact through collaboration in research, innovation and education,” Rice President Reginald DesRoches says in a news release. “Our presence in India is a critical step in expanding our global reach, and we are excited to engage more with India’s academic leaders and industries to address some of the most pressing challenges of our time.”

The new hub will be in the country’s third-largest city and the center of the country’s high-tech industry, Bengaluru, India, and will include collaborations with top-tier research and academic institutions.

Rice continues its collaborations with institutions like the Indian Institute of Technology (IIT) Kanpur and the Indian Institute of Science (IISc) Bengaluru. The partnerships are expected to advance research initiatives, student and faculty exchanges and collaborations in artificial intelligence, biotechnology and sustainable energy.

India was a prime spot for the location due to the energy, climate change, artificial intelligence and biotechnology studies that align with Rice’s research that is outlined in its strategic plan Momentous: Personalized Scale for Global Impact.

“India’s position as one of the world’s fastest-growing education and technology markets makes it a crucial partner for Rice’s global vision,” vice president for global at Rice Caroline Levander adds. “The U.S.-India relationship, underscored by initiatives like the U.S.-India Initiative on Critical and Emerging Technology, provides fertile ground for educational, technological and research exchanges.”

On November 18, the university hosted a ribbon-cutting ceremony in Bengaluru, India to help launch the project.

“This expansion reflects our commitment to fostering a more interconnected world where education and research transcend borders,” DesRoches says.

UH-backed project secures $3.6M to transform CO2 into sustainable fuel with cutting-edge tech

funds granted

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

------

This article originally ran on EnergyCapital.

Houston innovator drives collaboration, access to investment with female-focused group

HOUSTON INNOVATORS PODCAST EPISODE 262

After working in technology in her home country of Pakistan, Samina Farid, who was raised in the United States, found her way to Houston in the '70s where business was booming.

She was recruited to work at Houston Natural Gas — a company that would later merge and create Enron — where she rose through the ranks and oversaw systems development for the company before taking on a role running the pipelines.

"When you're in technology, you're always looking for inefficiencies, and you always see areas where you can improve," Farid says on the Houston Innovators Podcast, explaining that she moved on from Enron in the mid-'80s, which was an exciting time for the industry.

"We had these silos of data across the industry, and I felt like we needed to be communicating better, having a good source of data, and making sure we weren't continuing to have the problems we were having," she says. "That was really the seed that got me started in the idea of building a company."

She co-founded Merrick Systems, a software solutions business for managing oil and gas production, with her nephew, and thus began her own entrepreneurial journey. She came to another crossroads in her career after selling that business in 2014 and surviving her own battle with breast cancer.

"I got involved in investing because the guys used to talk about it — there was always men around me," Farid says. "I was curious."

In 2019, she joined an organization called Golden Seeds. Founded in 2005 in New York, the network of angel investors funding female-founded enterprises has grown to around 280 members across eight chapters. Suzan Deison, CEO of the Houston Women's Chamber, was integral in bringing the organization to Houston, and now Farid leads it as head of the Houston Chapter of Golden Seeds.

For Farid, the opportunity for Houston is the national network of investors — both to connect local female founders to potential capital from coast to coast and to give Houston investors deal flow from across the country.

"It was so hard for me to get funding for my own company," Farid says. "Having access to capital was only on the coasts. Software and startups was too risky."

Now, with Golden Seeds, the opportunity is there — and Farid says its an extremely collaborative investor network, working with local organizations like the Houston Angel Network and TiE Houston.

"With angel investing, when we put our money in, we want these companies to succeed," she says."We want more people to see these companies and to invest in them. We're not competing. We want to work with others to help these companies succeed."