out-of-this-world tech

Houston-based research organization taps video game makers to advance space medicine

A Houston space medicine research organization has partnered with a video game maker that has created surgery simulation technology. Photo via levelex.com

A Houston-based organization affiliated with NASA has teamed up with a video game company to advance virtual simulation in space medicine.

The Translational Research Institute for Space Health, known as TRISH, in partnership with NASA in a consortium led by Baylor College of Medicine, California Institute of Technology in Pasadena, and Massachusetts Institute of Technology in Cambridge has advanced a new approach for space medicine using video game technology by collaborating with video game company, Level Ex.

"We discovered Level Ex through a process of landscaping the many virtual simulation companies that were out there," says Andrew Peterman Director of Information System at TRISH. "We especially noted those that were on the cutting edge of the technology."

Based in Houston, TRISH aims to collaborate with the best and the brightest to revolutionize space health, providing grants to companies with innovative concepts. With Level Ex, they found a new approach to decode earthly medical technologies in space.

Level Ex, a Chicago-based company created in 2015 was founded to provide training games for doctors to use to practice surgeries and procedures. The games are interactive, with the virtual patient reacting to the actions of the player. The training simulations consist of in-depth and physics-driven medical simulations that are verified by doctors in their advisory board.

"We're hoping to completely change the ways that doctors stay up to speed," says Level Ex founder-and-CEO Sam Glassnberg.

With their ongoing collaboration with TRISH, they have a challenge that's out of this world. In space, astronauts have limited space for medical tools and run on a limited crew. This makes providing basic medical training to all astronauts especially important.

Especially since the body begins to react to the new environmental conditions of space missions. The effects can be small or lead to new changes or challenges for astronauts who take on long-range missions. Astronauts may see their bodies slowly start to lose bone and muscle mass. Their fluid begins to shift toward their head, leading to increased risks of hypertension and thrombosis.

All of these are challenges NASA is working to address with the help of gaming technology from Level Ex that innovates the technology with higher-level capability and training. Combining video game technology and medical simulation applications to incorporate and explore the interplay of environmental conditions found in space.

"What we really liked about Level Ex is that they have an amazing team both on the clinical and technical side, says Peterman. "They are a group of former big-name game developers who along with clinical experts have married technology and medicine with their platform producing full in engine physics-driven real simulations rather than video playback."

The astronauts will train using simulations that allow them to practice a procedure in zero gravity conditions and even simulate the gravity conditions of Mars. The game will also allow astronauts to get their own on-screen avatar with their medical information thus allowing fellow astronauts to gain more practice and experience with fewer variables in space.

The advanced medical simulation platform has potential for commercial uses on earth, improving the range of the technology to simulate new, rare, and complex scenarios across a range of medical specialties, allowing doctors to practice a range of difficult scenarios without putting patient lives at risk.

Peterman says that the partnership is expected to continue into the future for immediate applications along with other innovations in astronaut healthcare, including autonomous frameworks to provide medical knowledge in outer space.

Trending News

Building Houston

 
 

Allterum Therapeutics Inc., a portfolio company of Fannin Innovation Studio, is using the funds to prepare for clinical trials. Photo via Getty Images

Allterum Therapeutics Inc. has built a healthy launchpad for clinical trials of an immunotherapy being developed to fight a rare form of pediatric cancer.

The Houston startup recently collected $1.8 million in seed funding through an investor group associated with Houston-based Fannin Innovation Studio, which focuses on commercializing biotech and medtech discoveries. Allterum has also brought aboard pediatric oncologist Dr. Philip Breitfeld as its chief medical officer. And the startup, a Fannin spinout, has received a $2.9 million grant from the Cancer Prevention Research Institute of Texas.

The funding and Breitfeld's expertise will help Allterum prepare for clinical trials of 4A10, a monoclonal antibody therapy for treatment of cancers that "express" the interleukin-7 receptor (IL7R) gene. These cancers include pediatric acute lymphoblastic leukemia (ALL) and some solid-tumor diseases. The U.S. Food and Drug Administration (FDA) has granted "orphan drug" and "rare pediatric disease" designations to Allterum's monoclonal antibody therapy.

If the phrase "monoclonal antibody therapy" sounds familiar, that's because the FDA has authorized emergency use of this therapy for treatment of COVID-19. In early January, the National Institute of Allergy and Infectious Diseases announced the start of a large-scale clinical trial to evaluate monoclonal antibody therapy for treatment of mild and moderate cases of COVID-19.

Fannin Innovation Studio holds exclusive licensing for Allterum's antibody therapy, developed at the National Cancer Institute. Aside from the cancer institute, Allterum's partners in advancing this technology include the Therapeutic Alliance for Children's Leukemia, Baylor College of Medicine, Texas Children's Hospital, Children's Oncology Group, and Leukemia & Lymphoma Society.

Although many pediatric patients with ALL respond well to standard chemotherapy, some patients continue to grapple with the disease. In particular, patients whose T-cell ALL has returned don't have effective standard therapies available to them. Similarly, patients with one type of B-cell ALL may not benefit from current therapies. Allterum's antibody therapy is designed to effectively treat those patients.

Later this year, Allterum plans to seek FDA approval to proceed with concurrent first- and second-phase clinical trials for its immunotherapy, says Dr. Atul Varadhachary, managing partner of Fannin Innovation Studio, and president and CEO of Allterum. The cash Allterum has on hand now will go toward pretrial work. That will include the manufacturing of the antibody therapy by Japan's Fujifilm Diosynth Biotechnologies, which operates a facility in College Station.

"The process of making a monoclonal antibody ready to give to patients is actually quite expensive," says Varadhachary, adding that Allterum will need to raise more money to carry out the clinical trials.

The global market for monoclonal antibody therapies is projected to exceed $350 billion by 2027, Fortune Business Insight says. The continued growth of these products "is expected to be a major driver of overall biopharmaceutical product sales," according to a review published last year in the Journal of Biomedical Science.

One benefit of these antibody therapies, delivered through IV-delivered infusions, is that they tend to cause fewer side effects than chemotherapy drugs, the American Cancer Society says.

"Monoclonal antibodies are laboratory-produced molecules engineered to serve as substitute antibodies that can restore, enhance or mimic the immune system's attack on cancer cells. They are designed to bind to antigens that are generally more numerous on the surface of cancer cells than healthy cells," the Mayo Clinic says.

Varadhachary says that unlike chemotherapy, monoclonal antibody therapy takes aim at specific targets. Therefore, monoclonal antibody therapy typically doesn't broadly harm healthy cells the way chemotherapy does.

Allterum's clinical trials initially will involve children with ALL, he says, but eventually will pivot to children and adults with other kinds of cancer. Varadhachary believes the initial trials may be the first cancer therapy trials to ever start with children.

"Our collaborators are excited about that because, more often than not, the cancer drugs for children are ones that were first developed for adults and then you extend them to children," he says. "We're quite pleased to be able to do something that's going to be important to children."

Trending News