Hang up to hang out

This Houston app wants to connect outdoor sports hobbyists with its new platform

A brother and sister team have created a digital tool to connect people on their outdoor adventures. Getty Images

Jeff Long had plenty of professional connections, but he struggled to find a network of people with similar outdoor hobbies.

"I'm a climber and I had no good way to meet other climbers," he says.

His sister, Sarah Long, had a similar problem when she was skiing at the Whistler Resort in British Columbia.

"I was alone and I was looking for people to ski with," she says. "So, I actually got on Tinder and made it a point to say, 'Not looking for a hookup, but if you're here and want to ski, so am I.'"

The siblings weren't alone in their dissatisfaction, and, within a few months of launching Axis Earth, the Houston-based app has over 1,500 users.

The app is part location finder, part social media channel and part professional networking tool. Designed for enthusiasts and professional athletes of individual sports (think: skiing, climbing, surfing, etc.), Axis Earth connects them with others in their area who share their interests, giving them running or climbing partners.

"We use information input by the users and geolocation software to find them the best connections," explained Jeff. "And our algorithm filters through what they've provided us about their interests and level of participation or competition so we can give them the people who seem most compatible."

The app launched on Sept. 15, but the siblings have put in nearly two years of development.

"The first year was really fleshing out the idea, and creating a business plan that allowed us to feel comfortable being able to bring it to market," says Sarah.

The pair divided their tasks for creating the app based on their own strengths. Sarah, who's based in the Washington D.C. area, handles the business development, logistics, and operations. She founded her marketing and communications services firm called Breck — named after the Colorado skiing resort, Breckenridge. Jeff, who Sarah calls "the face of Axis Earth" and is naturally more outgoing, dealt with marketing and brand awareness.

She and Jeff did multiple interviews with athletes about the kinds of things they wanted to see in a site like this. Software teams spent six months building the back-end mechanisms that would put those opinions into practice. Then came all the front-end design.

The result is an app that can appeal, the Longs feel, to users across multiple disciplines and at multiple skill levels. Users select the sport they're passionate about and choose their level of of participation from beginner, intermediate, or professional.

"And for those who select professional, we independently validate that," says Sarah.

The app is designed for those who enjoy being active. Jeff said that they wanted something that would use technology to get people away from technology.

"I want people to be able to use their phones to put down their phones," he says. "Whether you're using the app to find other people who want to do what you do, or if you're looking at a photo someone posted and it inspires you to get out there and be more active."

Trending News

 
 

Promoted

A research team housed out of the newly launched Rice Biotech Launch Pad received funding to scale tech that could slash cancer deaths in half. Photo via Rice University

A research funding agency has deployed capital into a team at Rice University that's working to develop a technology that could cut cancer-related deaths in half.

Rice researchers received $45 million from the National Institutes of Health's Advanced Research Projects Agency for Health, or ARPA-H, to scale up development of a sense-and-respond implant technology. Rice bioengineer Omid Veiseh leads the team developing the technology as principal investigator.

“Instead of tethering patients to hospital beds, IV bags and external monitors, we’ll use a minimally invasive procedure to implant a small device that continuously monitors their cancer and adjusts their immunotherapy dose in real time,” he says in a news release. “This kind of ‘closed-loop therapy’ has been used for managing diabetes, where you have a glucose monitor that continuously talks to an insulin pump. But for cancer immunotherapy, it’s revolutionary.”

Joining Veiseh on the 19-person research project named THOR, which stands for “targeted hybrid oncotherapeutic regulation,” is Amir Jazaeri, co-PI and professor of gynecologic oncology at the University of Texas MD Anderson Cancer Center. The device they are developing is called HAMMR, or hybrid advanced molecular manufacturing regulator.

“Cancer cells are continually evolving and adapting to therapy. However, currently available diagnostic tools, including radiologic tests, blood assays and biopsies, provide very infrequent and limited snapshots of this dynamic process," Jazaeri adds. "As a result, today’s therapies treat cancer as if it were a static disease. We believe THOR could transform the status quo by providing real-time data from the tumor environment that can in turn guide more effective and tumor-informed novel therapies.”

With a national team of engineers, physicians, and experts across synthetic biology, materials science, immunology, oncology, and more, the team will receive its funding through the Rice Biotech Launch Pad, a newly launched initiative led by Veiseh that exists to help life-saving medical innovation scale quickly.

"Rice is proud to be the recipient of the second major funding award from the ARPA-H, a new funding agency established last year to support research that catalyzes health breakthroughs," Rice President Reginald DesRoches says. "The research Rice bioengineer Omid Veiseh is doing in leading this team is truly groundbreaking and could potentially save hundreds of thousands of lives each year. This is the type of research that makes a significant impact on the world.”

The initial focus of the technology will be on ovarian cancer, and this funding agreement includes a first-phase clinical trial of HAMMR for the treatment of recurrent ovarian cancer that's expected to take place in the fourth year of THOR’s multi-year project.

“The technology is broadly applicable for peritoneal cancers that affect the pancreas, liver, lungs and other organs,” Veiseh says. “The first clinical trial will focus on refractory recurrent ovarian cancer, and the benefit of that is that we have an ongoing trial for ovarian cancer with our encapsulated cytokine ‘drug factory’ technology. We'll be able to build on that experience. We have already demonstrated a unique model to go from concept to clinical trial within five years, and HAMMR is the next iteration of that approach.”

Trending News

 
 

Promoted