Xiaoyu Yang, a graduate student at Rice, is the lead author on a study published in the journal Science on smart cell design. Photo by Jeff Fitlow/ Courtesy Rice University

Bioengineers at Rice University have developed a “new construction kit” for building custom sense-and-respond circuits in human cells, representing a major breakthrough in the field of synthetic biology, which could "revolutionize" autoimmune disease and cancer therapeutics.

In a study published in the journal Science, the team focused on phosphorylation, a cellular process in the body in which a phosphate group is added to a protein, signaling a response. In multicellular organisms, phosphorylation-based signaling can involve a multistage, or a cascading-like effect. Rice’s team set out to show that each cycle in a cascade can be treated as an elementary unit, meaning that they can be reassembled in new configurations to form entirely novel pathways linking cellular inputs and outputs.

Previous research on using phosphorylation-based signaling for therapeutic purposes has focused on re-engineering pathways.

“This opens up the signaling circuit design space dramatically,” Caleb Bashor, assistant professor of bioengineering and biosciences and corresponding author on the study, said in a news release. “It turns out, phosphorylation cycles are not just interconnected but interconnectable … Our design strategy enabled us to engineer synthetic phosphorylation circuits that are not only highly tunable but that can also function in parallel with cells’ own processes without impacting their viability or growth rate.”

Bashor is the deputy director for the Rice Synthetic Biology Institute, which launched last year.

The Rice lab's sense-and-respond cellular circuit design is also innovative because phosphorylation occurs rapidly. Thus, the new circuits could potentially be programmed to respond to physiological events in minutes, compared to other methods, which take hours to activate.

Rice’s team successfully tested the circuits for sensitivity and their ability to respond to external signals, such as inflammatory issues. The researchers then used the framework to engineer a cellular circuit that can detect certain factors, control autoimmune flare-ups and reduce immunotherapy-associated toxicity.

“This work brings us a whole lot closer to being able to build ‘smart cells’ that can detect signs of disease and immediately release customizable treatments in response,” Xiaoyu Yang, a graduate student in the Systems, Synthetic and Physical Biology Ph.D. program at Rice who is the lead author on the study, said in a news release.

Ajo-Franklin, a professor of biosciences, bioengineering, chemical and biomolecular engineering and a Cancer Prevention and Research Institute of Texas Scholar, added “the Bashor lab’s work vaults us forward to a new frontier — controlling mammalian cells’ immediate response to change.”

Cemvita aims to capitalize on Brazil’s regulatory framework around biodiesel blending and Sustainable Aviation Fuel.Photo courtesy of Cemvita

Pioneering Houston biotech startup expands to Brazil for next phase

On the Move

Houston biotech company Cemvita has expanded into Brazil. The company officially established a new subsidiary in the country under the same name.

According to an announcement made earlier this month, the expansion aims to capitalize on Brazil’s progressive regulatory framework, including Brazil’s Fuel of the Future Law, which was enacted in 2024. The company said the expansion also aims to coincide with the 2025 COP30, the UN’s climate change conference, which will be hosted in Brazil in November.

Cemvita utilizes synthetic biology to transform carbon emissions into valuable bio-based chemicals.

“For decades Brazil has pioneered the bioeconomy, and now the time has come to create the future of the circular bioeconomy,” Moji Karimi, CEO of Cemvita, said in a news release. “Our vision is to combine the innovation Cemvita is known for with Brazil’s expertise and resources to create an ecosystem where waste becomes opportunity and sustainability drives growth. By joining forces with Brazilian partners, Cemvita aims to build on Brazil’s storied history in the bioeconomy while laying the groundwork for a circular and sustainable future.”

The Fuel of the Future Law mandates an increase in the biodiesel content of diesel fuel, starting from 15 percent in March and increasing to 20 percent by 2030. It also requires the adoption of Sustainable Aviation Fuel (SAF) and for domestic flights to reduce greenhouse gas emissions by 1 percent starting in 2027, growing to 10 percent reduction by 2037.

Cemvita agreed to a 20-year contract that specified it would supply up to 50 million gallons of SAF annually to United Airlines in 2023.

"This is all made possible by our innovative technology, which transforms carbon waste into value,” Marcio Da Silva, VP of Innovation, said in a news release. “Unlike traditional methods, it requires neither a large land footprint nor clean freshwater, ensuring minimal environmental impact. At the same time, it produces high-value green chemicals—such as sustainable oils and biofuels—without competing with the critical resources needed for food production."

In 2024, Cemvita became capable of generating 500 barrels per day of sustainable oil from carbon waste at its first commercial plant. As a result, Cemvita quadrupled output at its Houston plant. The company had originally planned to reach this milestone in 2029.

---

This story originally appeared on our sister site, EnergyCapitalHTX.

Thanks to technology advancements, Cemvita is now capable of generating 500 barrels per day of sustainable oil from carbon waste at its first commercial plant. Photo via cemvita.com

Houston company's sustainable oil product reaches milestone production capacity 5 years early

overachieving

Houston-based biotech company Cemvita has achieved a key production goal five years ahead of schedule.

Thanks to technology advancements, Cemvita is now capable of generating 500 barrels per day of sustainable oil from carbon waste at its first commercial plant. As a result, Cemvita has quadrupled output at the Houston plant. The company had planned to reach this milestone in 2029.

Cemvita, founded in 2017, says this achievement paves the way for increased production capacity, improved operational efficiency, and an elevated advantage in the sustainable oil market.

“What’s so amazing about synthetic biology is that humans are just scratching the surface of what’s possible,” says Moji Karimi, co-founder and CEO of Cemvita. “Our focus on the first principles has allowed us to design and create new biotech more cheaply and faster than ever before.”

The production achievement follows Cemvita’s recent breakthrough in development of a solvent-free extraction bioprocess.

In 2023, United Airlines agreed to buy up to one billion gallons of sustainable aviation fuel from Cemvita’s first full-scale plant over the course of 20 years.

Cemvita’s investors include the UAV Sustainable Flight Fund, an investment arm of Chicago-based United; Oxy Low Carbon Ventures, an investment arm of Houston-based energy company Occidental Petroleum; and Japanese equipment and machinery manufacturer Mitsubishi Heavy Industries.

The new collaborative hub will foster research into cell therapies, artificial intelligence, nanotechnologies, and more. Photo via tmc.edu

Houston health care leaders announce new hub for cancer-fighting bioengineering

team work

Two Houston organizations recently announced a new hub that will focus on developing cell therapies, nanotechnologies, cancer vaccines, artificial intelligence, and molecular imaging.

Rice University and The University of Texas MD Anderson Cancer Center have teamed up to “drive industry growth and advance life-saving technologies” through the newly established Cancer Bioengineering Collaborative, according to a news release announcing the initiative.

The collaboration between the two institutions includes fundamental and translational cancer research, developing new technologies for cancer detection and therapy, and securing external funding in support of further research and training.

Leading the hub will be Rice researcher and Cancer Prevention and Research Institute of Texas (CPRIT) scholar Gang Bao and MD Anderson’s Dr. Jeffrey Molldrem.

“There is tremendous potential in bringing together experts in engineering and cancer as part of this focused, collaborative framework that is truly unique, not only owing to the complementary nature of the respective strengths but also because this is the first formal joint research initiative of its kind between the two institutions,” says Bao, department chair and Foyt Family Professor of Bioengineering, professor of chemistry, materials science and nanoengineering and mechanical engineering, in the release.

The joint effort will also host monthly seminars focused on cancer bioengineering, annual retreats to highlight research and international leaders in cancer and bioengineering, and also a seed grant program to fund research projects in the early stages of development.

“From fundamental discoveries in cancer science, tumor immunology and patient care to innovative engineering advances in drug delivery systems, nanostructures and synthetic biology, there is great potential for enabling cross-disciplinary collaboration to develop new technologies and approaches for detecting, monitoring and treating cancer,” Molldrem, chair of Hematopoietic Biology & Malignancy at MD Anderson, says in the release. “Our goal is to bridge the gap between bioengineering and cancer research to create transformative solutions that significantly improve patient outcomes.”

Dr. Jeff Molldrem (left) and Gang Bao will lead the new collaborative hub. Photo via MD Anderson

The new Rice Synthetic Biology Institute is part of an $82 million investment the university put toward synthetic biology, neuroengineering, and physical biology in 2018. Photo via Rice.edu

Houston university launches new institute for synthetic biology

new to Hou

Rice University announced this month that it has officially launched the new Rice Synthetic Biology Institute.

The institute aims to strengthen the synthetic biology community across disciplines at the university, according to an announcement from Rice. It is part of an $82 million investment the university put toward synthetic biology, neuroengineering, and physical biology in 2018.

RSBI will be led by Caroline Ajo-Franklin, professor of biosciences, bioengineering, and chemical and biomolecular engineering, with support from a faculty steering committee.

Caroline Ajo-Franklin, professor of biosciences, bioengineering, and chemical and biomolecular engineering, will lead the new institute. Photo via Rice.edu

“At Rice, we have such deep expertise in synthetic biology,” Ajo-Franklin said in the announcement. “Connecting that deep expertise through this institute will lead to better science and more innovation.”

Synthetic biology is a discipline in which "researchers design living systems with new properties to address societal needs," according to Rice, with applications in medicine, manufacturing and environmental sustainability.

The university says that there are currently 18 faculty and more than 100 students and postdoctoral scholars at Rice working in this field within the schools of engineering and natural sciences.

The institute will initially focus on four research themes:

  1. Controlling the biological synthesis and patterning of proteins and cells into living materials that self-replicate and self-repair across a range of length scales
  2. Understanding cells as natural sensors and repurposing them into living therapeutics to detect and treat diseases, maintain health and prevent infections
  3. Developing living electronics to convert biochemical information into information-dense electronic signals in real-time at the cell-material interface
  4. Supporting cross-cutting scholarship aimed at accelerating the Design-Build-Test-Learn cycle and understanding the ethical, legal and social implications of translating these technologies into the public domain.

“Rice University is an amazing place to learn, teach, research and innovate,” Ramamoorthy Ramesh, executive vice president for research, added. “The Rice Synthetic Biology Institute will ensure that our researchers are recognized on the international stage for the life-changing work they are doing in Houston and around the world.”

Last year, Rice also launched the new Center for Human Performance with Houston Methodist inside Rice’s Tudor Fieldhouse. The interdisciplinary space aims to advance the study of exercise physiology, injury prevention, and rehabilitation while serving Rice student-athletes.

The university also unveiled another massive, collaborative space this academic year: The 250,000-square-foot Ralph S. O’Connor Building for Engineering and Science. Click here to read more about the state-of-the-art building.

Veronica Wu, founder of First Bight Ventures, joins the Houston Innovators Podcast to outline Houston's opportunities in synthetic biology and biomanufacturing. Photo courtesy

Investor advocates now is the time to position Houston as a leading biomanufacturing hub

houston innovators podcast episode 178

Houston has all the ingredients to be a successful synthetic biology hub, says Veronica Wu. She believes so strongly in this that she relocated to Houston from Silicon Valley just over a year ago to start a venture capital firm dedicated to the field. Since then, she's doubled down on her passion for Houston leading in biotech — especially when it comes to one uniquely Houston opportunity: biomanufacturing.

While Houston's health care innovation scene is actively deploying synthetic biology applications, Wu points to Houston-based Solugen, a plant-based chemical producer, as an example of what Houston has to offer at-scale industrial biomanufacturing. Houston has the workforce and the physical space available for more of these types of biomanufacturing plants, which have a huge potential to move the needle on reducing carbon emissions.

"This is really fundamental technology that's going to change the paradigm and whole dialogue of how we are making a significant impact in reducing a carbon footprint and improving sustainability," says Wu, founder and managing partner of First Bight Ventures, on the Houston Innovators Podcast.

Several aspects — government funding, corporate interest, advances in technology — have converged to make it an ideal time for synthetic biology innovators and investors, Wu explains on the show, and she has an idea of what Houston needs to secure its spot as a leader in the space: The BioWell.

First introduced at a Houston Tech Rodeo event at the Texas Medical Center's Innovation Factory, The BioWell is a public-private partnership that aims to provide access to pilot and lab space, mentorship and programming, and more support that biomanufacturing innovators critically need.

"The way we envision The BioWell is it will provide a holistic, curated support for startups to be able to get across the Valley of Death," Wu says, explaining that startups transitioning from research and development into commercialization need extra support. The BioWell will provide that, as well as allow more engagement from corporations, investors, and other players.

Now that her plans for The BioWell have been announced, Wu is looking for those who want to be a part of it.

She shares more about her mission and what's next for First Bight Ventures on the podcast. Listen to the interview below — or wherever you stream your podcasts — and subscribe for weekly episodes.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston team uses CPRIT funding to develop nanodrug for cancer immunotherapy

cancer research

With a relative five-year survival rate of 50 percent, pancreatic cancer is a diagnosis nobody wants. At 60 percent, the prognosis for lung cancer isn’t much rosier. That’s because both cancers contain regulatory B cells (Bregs), which block the body’s natural immunity, making it harder to fight the enemies within.

Newly popular immunotherapies in a category known as STING agonists may stimulate natural cancer defenses. However, they can also increase Bregs while simultaneously causing significant side effects. But Wei Gao, assistant professor of pharmacology at the University of Houston College of Pharmacy, may have a solution to that conundrum.

Gao and her team have developed Nano-273, a dual-function drug, packaged in an albumin-based particle, that boosts the immune system to help it better fight pancreatic and lung cancers. Gao’s lab recently received a $900,000 grant from the Cancer Prevention and Research Institute of Texas (CPRIT) to aid in fueling her research into the nanodrug.

“Nano-273 both activates STING and blocks PI3Kγ—a pathway that drives Breg expansion, while albumin nanoparticles help deliver the drug directly to immune cells, reducing unwanted side effects,” Gao said in a press release. “This approach reduces harmful Bregs while boosting immune cells that attack cancer, leading to stronger and more targeted anti-tumor responses.”

In studies using models of both pancreatic and lung cancers, Nano-273 has shown great promise with low toxicity. Its best results thus far have involved using the drug in combination with immunotherapy or chemotherapy.

With the CPRIT funds, Gao and her team will be able to charge closer to clinical use with a series of important steps. Those include continuing to test Nano-273 alongside other drugs, including immune checkpoint inhibitors. Safety studies will follow, but with future patients in mind, Gao will also work toward improving her drug’s production, making sure that it’s safe and high-quality every time, so that it is eventually ready for trials.

Gao added: “If successful, this project could lead to a new type of immunotherapy that offers lasting tumor control and improved survival for patients with pancreatic and lung cancers, two diseases that urgently need better treatments."

Houston booms as No. 2 U.S. metro for new home construction

Construction Boom

Driven by population growth, more residential rooftops are popping up across Houston and the rest of Texas than anywhere else in America.

Using data from the U.S. Census Bureau and Zillow, Construction Coverage found 65,747 new residential units were authorized in greater Houston in 2024. That figure landed Houston in second place among major metro areas for the total number of housing permits, including those for single-family homes, apartments, and condos.

Just ahead of Houston was the Dallas-Fort Worth Metroplex, which took first place with 71,788 residential permits approved in 2024. In third place was the country’s largest metro, New York City (57,929 permits).Elsewhere in Texas, the Austin metro ranked sixth (32,294 permits), and the San Antonio metro ranked 20th (14,857 permits).

Construction Coverage also sorted major metro areas based on the number of new housing units authorized per 1,000 existing homes in 2024. Raleigh, North Carolina, held the No. 1 spot (28.8 permits per 1,000 existing homes), followed by Austin at No. 2 (28.6), DFW at No. 3 (22.2), Houston at No. 4 (21.6), and San Antonio at No. 13 (13.6).

A Newsweek analysis of Census Bureau data shows building permits for 225,756 new residential units were approved in 2024 in Texas — a trend fueled largely by activity in DFW, Houston, Austin, and San Antonio. That put Texas atop the list of states building the most residential units for the year.

Through the first eight months of last year, 145,901 permits for new residential units were approved in Texas, according to Census Bureau data. That’s nearly 80,000 permits shy of the 2024 total.

Among the states, Construction Coverage ranks Texas sixth for the number of residential building permits approved in 2024 per 1,000 existing homes (17.9).

Extra housing is being built in Texas to meet demand spurred by population growth. From April 2020 to July 2024, the state’s population increased 7.3 percent, the Census Bureau says.

While builders are busy constructing new housing in Texas, they’re not necessarily profiting a lot from homebuilding activity.

“Market conditions remain challenging, with two-thirds of builders reporting they are offering incentives to move buyers off the fence,” North Carolina homebuilder Buddy Hughes, chairman of the National Association of Home Builders, said in a December news release. “Meanwhile, builders are contending with rising material and labor prices, as tariffs are having serious repercussions on construction costs.”

5+ must-know application deadlines for Houston innovators

apply now

Editor's note: As 2026 ramps up, the Houston innovation scene is looking for the latest groups of innovative startups that'll make an impact. A number of accelerators and competitions have opened applications. Read below to see which might be a good fit for you or your venture. And take careful note of the deadlines. Please note: this article may be updated to include additional information and programs.

Did we miss an accelerator or competition accepting applications? Email innoeditor@innovationmap.com for editorial consideration.

2026 HCC Business Plan Competition

Deadline: Jan. 26

Details: HCC’s annual Business Plan Competition (BPC) is an opportunity for proposed, startup and existing entrepreneurs to develop focused plans to start or grow their businesses. Accepted teams will be announced and training will begin in late February and run through early June, with six free, three-hour training sessions. Advising will be provided to each accepted team. Applicants can apply as a team of up to five persons. Finalists will present to to gudges on May 27, 2026. Last year, $26,000 was awarded in seed money to the top five teams. In-kind prizes were also awarded to all graduating teams including free products, services and memberships, with an estimated in-kind value totaling $147,000. Find more information here.

University of Houston Technology Bridge Innov8 Hub (Spring 2026)

Deadline: Jan . 30

Details: UHTB Innov8 Hub’s immersive, 12-week startup acceleration program designed to help early-stage founders launch and scale their technology startups. Selected participants will gain access to expert mentors and advisors, collaborate with a cohort of peers, and compete for cash prizes during our final pitch event. The cohort begins Feb. 16, 2026. The program culminates in Pitch Day, where participants present their ventures to an audience of investors and partners from across the UH innovation ecosystem. Find more information here.

Rice Business Plan Competition 2026

Deadline: Jan. 31

Details: The Rice Business Plan Competition, hosted by the Rice Alliance for Technology and Entrepreneurship, gives collegiate entrepreneurs real-world experience to pitch their startups, enhance their business strategy and learn what it takes to launch a successful company. Forty-two teams will compete for more than $1 million in cash, investments and prizes on April 9-11, 2026. Find more information here.

Rice Veterans Business Battle 2026

Deadline: Jan. 31

Details: The Rice Veterans Business Battle is one of the nation’s largest pitch competitions for veteran-led startups, providing founders with mentorship, exposure to investors and the opportunity to compete for non-dilutive cash prizes. The event has led to more than $10 million of investments since it began in 2015. Teams will compete April 8-9, 2026. Find more information here.

TEX-E Fellows Application 2026-2027

Deadline: Feb. 10

Details: The TEX‑E Fellowship is a hands-on program designed for students interested in energy, climate, and entrepreneurship across Texas. It connects participants with industry mentors, startup founders, investors and academic leaders while providing practical, "real-world" experience in customer discovery, business modeling, and energy-transition innovation. Fellows gain access to workshops, real-world projects, and a statewide network shaping the future of energy and climate solutions. Participants must be a student at PVAMU, UH, UT Austin, Rice University, MIT or Texas A&M. Find more information here.

2026 Energy Venture Day & Pitch Competition

Deadline: Feb. 13

Details: The Rice Alliance, the Houston Energy Transition Initiative (HETI) and TEX-E will present the annual Energy Venture Day and Pitch Competition during CERAWeek on March 24-25, 2026. Energy Venture Day features two days of presentations by energy tech ventures driving efficiency and advancements toward the energy transition. On March 24, the Pitch Preview at the Ion will feature over 50 companies presenting in front of Rice Alliance's robust network of investors and industry partners. On March 25, the Energy Venture Day and Pitch Competition during CERAWeek will showcase 36 ventures at the George R Brown Convention Center. The pitch competition is divided up into the TEX-E university track, in which Texas student-led energy startups compete for $50,000 in cash prizes, and the industry ventures track. The industry track is subdivided into three additional tracks, spanning materials to clean energy. The top three companies from each industry track will be named. The winner of the CERAWeek competition will also have the chance to advance and compete for the $1 million investment prize at the Startup World Cup. Find more information here.

Greentown Go Make 2026

Deadline: March 10

Details: Greentown Go Make 2026 is an open-innovation program with Shell and Technip Energies. The six-month program is advancing industrial decarbonization by accelerating catalytic innovations. Selected startups will gain access to a structured platform to engage leadership from Shell and Technip Energies and explore potential partnership outcomes, including pilots and demonstrations. They’ll also receive networking opportunities, partnership-focused programming, and marketing visibility throughout the program. The cohort will be selected in May. Find more information here.