Thanks to technology advancements, Cemvita is now capable of generating 500 barrels per day of sustainable oil from carbon waste at its first commercial plant. Photo via cemvita.com

Houston-based biotech company Cemvita has achieved a key production goal five years ahead of schedule.

Thanks to technology advancements, Cemvita is now capable of generating 500 barrels per day of sustainable oil from carbon waste at its first commercial plant. As a result, Cemvita has quadrupled output at the Houston plant. The company had planned to reach this milestone in 2029.

Cemvita, founded in 2017, says this achievement paves the way for increased production capacity, improved operational efficiency, and an elevated advantage in the sustainable oil market.

“What’s so amazing about synthetic biology is that humans are just scratching the surface of what’s possible,” says Moji Karimi, co-founder and CEO of Cemvita. “Our focus on the first principles has allowed us to design and create new biotech more cheaply and faster than ever before.”

The production achievement follows Cemvita’s recent breakthrough in development of a solvent-free extraction bioprocess.

In 2023, United Airlines agreed to buy up to one billion gallons of sustainable aviation fuel from Cemvita’s first full-scale plant over the course of 20 years.

Cemvita’s investors include the UAV Sustainable Flight Fund, an investment arm of Chicago-based United; Oxy Low Carbon Ventures, an investment arm of Houston-based energy company Occidental Petroleum; and Japanese equipment and machinery manufacturer Mitsubishi Heavy Industries.

The new collaborative hub will foster research into cell therapies, artificial intelligence, nanotechnologies, and more. Photo via tmc.edu

Houston health care leaders announce new hub for cancer-fighting bioengineering

team work

Two Houston organizations recently announced a new hub that will focus on developing cell therapies, nanotechnologies, cancer vaccines, artificial intelligence, and molecular imaging.

Rice University and The University of Texas MD Anderson Cancer Center have teamed up to “drive industry growth and advance life-saving technologies” through the newly established Cancer Bioengineering Collaborative, according to a news release announcing the initiative.

The collaboration between the two institutions includes fundamental and translational cancer research, developing new technologies for cancer detection and therapy, and securing external funding in support of further research and training.

Leading the hub will be Rice researcher and Cancer Prevention and Research Institute of Texas (CPRIT) scholar Gang Bao and MD Anderson’s Dr. Jeffrey Molldrem.

“There is tremendous potential in bringing together experts in engineering and cancer as part of this focused, collaborative framework that is truly unique, not only owing to the complementary nature of the respective strengths but also because this is the first formal joint research initiative of its kind between the two institutions,” says Bao, department chair and Foyt Family Professor of Bioengineering, professor of chemistry, materials science and nanoengineering and mechanical engineering, in the release.

The joint effort will also host monthly seminars focused on cancer bioengineering, annual retreats to highlight research and international leaders in cancer and bioengineering, and also a seed grant program to fund research projects in the early stages of development.

“From fundamental discoveries in cancer science, tumor immunology and patient care to innovative engineering advances in drug delivery systems, nanostructures and synthetic biology, there is great potential for enabling cross-disciplinary collaboration to develop new technologies and approaches for detecting, monitoring and treating cancer,” Molldrem, chair of Hematopoietic Biology & Malignancy at MD Anderson, says in the release. “Our goal is to bridge the gap between bioengineering and cancer research to create transformative solutions that significantly improve patient outcomes.”

Dr. Jeff Molldrem (left) and Gang Bao will lead the new collaborative hub. Photo via MD Anderson

The new Rice Synthetic Biology Institute is part of an $82 million investment the university put toward synthetic biology, neuroengineering, and physical biology in 2018. Photo via Rice.edu

Houston university launches new institute for synthetic biology

new to Hou

Rice University announced this month that it has officially launched the new Rice Synthetic Biology Institute.

The institute aims to strengthen the synthetic biology community across disciplines at the university, according to an announcement from Rice. It is part of an $82 million investment the university put toward synthetic biology, neuroengineering, and physical biology in 2018.

RSBI will be led by Caroline Ajo-Franklin, professor of biosciences, bioengineering, and chemical and biomolecular engineering, with support from a faculty steering committee.

Caroline Ajo-Franklin, professor of biosciences, bioengineering, and chemical and biomolecular engineering, will lead the new institute. Photo via Rice.edu

“At Rice, we have such deep expertise in synthetic biology,” Ajo-Franklin said in the announcement. “Connecting that deep expertise through this institute will lead to better science and more innovation.”

Synthetic biology is a discipline in which "researchers design living systems with new properties to address societal needs," according to Rice, with applications in medicine, manufacturing and environmental sustainability.

The university says that there are currently 18 faculty and more than 100 students and postdoctoral scholars at Rice working in this field within the schools of engineering and natural sciences.

The institute will initially focus on four research themes:

  1. Controlling the biological synthesis and patterning of proteins and cells into living materials that self-replicate and self-repair across a range of length scales
  2. Understanding cells as natural sensors and repurposing them into living therapeutics to detect and treat diseases, maintain health and prevent infections
  3. Developing living electronics to convert biochemical information into information-dense electronic signals in real-time at the cell-material interface
  4. Supporting cross-cutting scholarship aimed at accelerating the Design-Build-Test-Learn cycle and understanding the ethical, legal and social implications of translating these technologies into the public domain.

“Rice University is an amazing place to learn, teach, research and innovate,” Ramamoorthy Ramesh, executive vice president for research, added. “The Rice Synthetic Biology Institute will ensure that our researchers are recognized on the international stage for the life-changing work they are doing in Houston and around the world.”

Last year, Rice also launched the new Center for Human Performance with Houston Methodist inside Rice’s Tudor Fieldhouse. The interdisciplinary space aims to advance the study of exercise physiology, injury prevention, and rehabilitation while serving Rice student-athletes.

The university also unveiled another massive, collaborative space this academic year: The 250,000-square-foot Ralph S. O’Connor Building for Engineering and Science. Click here to read more about the state-of-the-art building.

Veronica Wu, founder of First Bight Ventures, joins the Houston Innovators Podcast to outline Houston's opportunities in synthetic biology and biomanufacturing. Photo courtesy

Investor advocates now is the time to position Houston as a leading biomanufacturing hub

houston innovators podcast episode 178

Houston has all the ingredients to be a successful synthetic biology hub, says Veronica Wu. She believes so strongly in this that she relocated to Houston from Silicon Valley just over a year ago to start a venture capital firm dedicated to the field. Since then, she's doubled down on her passion for Houston leading in biotech — especially when it comes to one uniquely Houston opportunity: biomanufacturing.

While Houston's health care innovation scene is actively deploying synthetic biology applications, Wu points to Houston-based Solugen, a plant-based chemical producer, as an example of what Houston has to offer at-scale industrial biomanufacturing. Houston has the workforce and the physical space available for more of these types of biomanufacturing plants, which have a huge potential to move the needle on reducing carbon emissions.

"This is really fundamental technology that's going to change the paradigm and whole dialogue of how we are making a significant impact in reducing a carbon footprint and improving sustainability," says Wu, founder and managing partner of First Bight Ventures, on the Houston Innovators Podcast.

Several aspects — government funding, corporate interest, advances in technology — have converged to make it an ideal time for synthetic biology innovators and investors, Wu explains on the show, and she has an idea of what Houston needs to secure its spot as a leader in the space: The BioWell.

First introduced at a Houston Tech Rodeo event at the Texas Medical Center's Innovation Factory, The BioWell is a public-private partnership that aims to provide access to pilot and lab space, mentorship and programming, and more support that biomanufacturing innovators critically need.

"The way we envision The BioWell is it will provide a holistic, curated support for startups to be able to get across the Valley of Death," Wu says, explaining that startups transitioning from research and development into commercialization need extra support. The BioWell will provide that, as well as allow more engagement from corporations, investors, and other players.

Now that her plans for The BioWell have been announced, Wu is looking for those who want to be a part of it.

She shares more about her mission and what's next for First Bight Ventures on the podcast. Listen to the interview below — or wherever you stream your podcasts — and subscribe for weekly episodes.

San Diego-based rBIO moved to Houston to take advantage of the growing ecosystem of biomanufacturing and synthetic biology. Photo via Getty Images

California-founded biotech startup relocates to join Houston's emerging bioeconomy

new to hou

Cameron Owen had an idea for a synthetic biology application, and he pitched it to a handful of postdoctoral programs. When he received the feedback that he didn't have enough research experience, he decided to launch a startup based in San Diego around his idea. He figured that he'd either get the experience he needed to re-apply, or he'd create a viable company.

After three years of research and development, Owen's path seems to have taken him down the latter of those two options, and he moved his viable company, rBIO, to Houston — a twist he didn't see coming.

“Houston was not on my radar until about a year and a half ago,” Owen says, explaining that he thought of Houston as a leading health care hub, but the coasts still had an edge when it came to what he was doing. “San Diego and the Boston area are the two big biotech and life science hubs.”

But when he visited the Bayou City in December of 2021, he says he saw first hand that something new was happening.

“Companies from California like us and the coastal areas were converging here in Houston and creating this new type of bioeconomy,” he tells InnovationMap.

Owen moved to Houston last year, but rBIO still has an academic partner in Washington University in St. Louis and a clinical research organization it's working with too, so he admits rBIO's local footprint is relatively small — but not for long.

"When we look to want to get into manufacturing, we definitely want to build something here in Houston," he says. "We’re just not to that point as a company."

In terms of the stage rBIO is in now, Owen says the company is coming out of R&D and into clinical studies. He says rBIO has plans to fundraise and is meeting with potential partners that will help his company scale and build out a facility.

With the help of its CRO partner, rBIO has two ongoing clinical projects — with a third coming next month. Owen says right now rBIO is targeting the pharmaceutical industry’s biologics sector — these are drugs our bodies make naturally, like insulin. About 12 percent of the population in the United States has diabetes, which translates to almost 40 million people. The demand for insulin is high, and rBIO has a way to create it — and at 30 percent less cost.

This is just the tip of the iceberg — the world of synthetic biology application is endless.

“Now that we can design and manipulate biology in ways we’ve never been able to before,” Owen says, "we’re really only limited by our own imagination.”

Synthetic biology is a field of science that involves programing biology to create and redesign natural elements. While it sounds like science fiction, Owen compares it to any other type of technology.

“Biology really is a type of software,” he says. “Phones and computers at their core run on 1s and 0s. In biology, it’s kind of the same thing, but instead of two letters, it’s four — A, C, T, and G.”

“The cool thing about biology is the software builds the hardware,” he continues. “You put that code in there and the biology builds in and of itself.”

Owen says the industry of synthetic biology has been rising in popularity for years, but the technology has only recently caught up.

“We’re exploring a brave new world — there’s no doubt about that,” Owen says.

Veronica Wu, founder of First Bight Ventures, recently announced new team members and her hopes for making Houston a leader in synthetic biology. Photo courtesy of First Bight Ventures

Houston synthetic biology VC grows team ahead of foundry launch

future of tech

Since launching earlier this year, a Houston-based venture capital firm dedicated to investing in synthetic biology companies has made some big moves.

First Bight Ventures, founded by Veronica Wu, announced its growing team and plans to stand up a foundry and accelerator for its portfolio companies and other synthetic biology startups in Houston. The firm hopes to make Houston an international leader in synthetic biology.

“We have a moment in time where we can make Houston the global epicenter of synthetic biology and the bio economy," Wu says to a group of stakeholders last week at First Bight's Rocketing into the Bioeconomy event. "Whether its energy, semiconductor, space exploration, or winning the World Series — Houstonians lead. It’s in our DNA. While others look to the stars, we launch people into space.”

At First Bight's event, Wu introduced the company's new team members. Angela Wilkins, executive director of the Ken Kennedy Institute at Rice University, joined First Bight as partner, and Serafina Lalany, former executive director of Houston Exponential, was named entrepreneur in residence. Carlos Estrada, who has held leadership positions within WeWork in Houston, also joins the team as entrepreneur in residence and will oversee the company's foundry and accelerator that will be established to support synthetic biology startups, Wu says.

“First Bight is investing to bring the best and the brightest — and most promising — synthetic biology startups from around the country to Houston," Wu continues.

First Bighthas one seed-staged company announced in its portfolio. San Diego-based Persephone Biosciences was founded in 2017 by synthetic and metabolic engineering pioneers, Stephanie Culler and Steve Van Dien. The company is working on developing microbial products that impact patient and infant health.

Wu, who worked at Apple before the launch of the iPhone and Tesla before Elon Musk was a household name, says she saw what was happening in Houston after her brother moved to town. She first invested in Houston's synthetic biology ecosystem when she contributed to one of Solugen's fundraising rounds. The alternative plastics company is now a unicorn valued at over $1 billion.

“I founded First Bight because of what I see is the next great wave of technology innovation," she says at the event. "I founded it in Houston because the pieces are right here.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based equitable entrepreneurship tech platform expands programs

coming soon

Fresh off of celebrating the dismissal of a lawsuit from former Trump Administration officials, Hello Alice is expanding some of its offerings for entrepreneurs.

In partnership with top organizations — like Progressive, Antares Capital, Wells Fargo, and FedEx — Hello Alice has added new offerings for its 2024 Boost Camp programs, a mix of skill-building support and grant opportunities.

“We are fortunate to continue working with great enterprise partners who share our commitment to supporting Main Street through crucial grants and mentorship programs,” Carolyn Rodz, CEO and co-founder of Hello Alice, says in a news release. “Small businesses drive our economy, yet often lack the necessary financing and resources. By partnering with major companies, Hello Alice is ensuring that small businesses have access to the tools and opportunities they need to thrive and create jobs in their local communities. Together, we are building a robust support system that fosters innovation and growth for small businesses across the country.”

This year's programs, according to Hello Alice, are as follows:

  • Antares Capital REACH Cohort: The Antares REACH Grant Program provides $20,000 grants to small businesses. Grant recipients will also take part in Antares’ Growth Track Boost Camp program, a digital community which will be home to monthly business coaching workshops, mentorship, networking, and more. Applications are open until June 28, and the program begins August 8.
  • Progressive Driving Small Business Forward Grant & Booster Camp Program: Progressive is dedicating $1 million to award 20 deserving businesses with a $50,000 grant each. Grant recipients will be invited to attend an exclusive 12-week virtual Boost Camp coaching program. Applications have closed for the program beginning September 10.
  • Wells Fargo: Wells Fargo is supporting four virtual accelerator programs over the next 18 months, designed to support up to 500 participants for each program, with a focus on business health and credit-building practices. Applications will be announced this summer for the program, which will begin in early fall.
  • FedEx: The FedEx Entrepreneur Fund supports entrepreneurs in the United States by providing them with the necessary funding, resources, and networks to enhance the success of their businesses, including the Boost Camp coaching program.
  • Applications will be announced this fall for the program, which will begin in the winter.

More information and application access is available online.

Last year's Boost programs benefitted 100 small businesses, according to Hello Alice, which reported that the 2023 Antares REACH Cohort resulted in 60 percent of participants seeing an increase in their Business Health Score and 93 percent felt better equipped to confront challenges and capitalize on opportunities. In the end, 85 percent of participants feeling more optimistic about their business growth prospects.

"Hello Alice is proud to partner with high-level enterprise companies to empower small businesses and foster their success," Natalie Diamond, vice president of business development at Hello Alice, adds. "Together, we are creating unparalleled opportunities for entrepreneurs to achieve brand success, drive financial fitness, and thrive in today's competitive market. Our joint endeavors not only offer access to capital and resources but also provide tailored guidance and mentorship, arming small business owners with the insights and support necessary to navigate challenges and seize growth opportunities.”

Tech disruptions sparked by Texas co.'s update highlight the fragility of globally connected technology

Airlines, banks, hospitals and other risk-averse organizations around the world chose cybersecurity company CrowdStrike to protect their computer systems from hackers and data breaches.

But all it took was one faulty CrowdStrike software update to cause global disruptions Friday that grounded flights, knocked banks and media outlets offline, and disrupted hospitals, retailers and other services.

“This is a function of the very homogenous technology that goes into the backbone of all of our IT infrastructure,” said Gregory Falco, an assistant professor of engineering at Cornell University. “What really causes this mess is that we rely on very few companies, and everybody uses the same folks, so everyone goes down at the same time.”

The trouble with the update issued by CrowdStrike and affecting computers running Microsoft's Windows operating system was not a hacking incident or cyberattack, according to CrowdStrike, which apologized and said a fix was on the way.

But it wasn't an easy fix. It required “boots on the ground” to remediate, said Gartner analyst Eric Grenier.

“The fix is working, it’s just a very manual process and there’s no magic key to unlock it,” Grenier said. “I think that is probably what companies are struggling with the most here.”

While not everyone is a client of CrowdStrike and its platform known as Falcon, it is one of the leading cybersecurity providers, particularly in transportation, healthcare, banking and other sectors that have a lot at stake in keeping their computer systems working.

“They’re usually risk-averse organizations that don’t want something that’s crazy innovative, but that can work and also cover their butts when something goes wrong. That’s what CrowdStrike is,” Falco said. “And they’re looking around at their colleagues in other sectors and saying, ‘Oh, you know, this company also uses that, so I’m gonna need them, too.’”

Worrying about the fragility of a globally connected technology ecosystem is nothing new. It's what drove fears in the 1990s of a technical glitch that could cause chaos at the turn of the millennium.

“This is basically what we were all worried about with Y2K, except it’s actually happened this time,” wrote Australian cybersecurity consultant Troy Hunt on the social platform X.

Across the world Friday, affected computers were showing the “blue screen of death” — a sign that something went wrong with Microsoft's Windows operating system.

But what's different now is “that these companies are even more entrenched,” Falco said. "We like to think that we have a lot of players available. But at the end of the day, the biggest companies use all the same stuff.”

Founded in 2011 and publicly traded since 2019, CrowdStrike describes itself in its annual report to financial regulators as having “reinvented cybersecurity for the cloud era and transformed the way cybersecurity is delivered and experienced by customers.” It emphasizes its use of artificial intelligence in helping to keep pace with adversaries. It reported having 29,000 subscribing customers at the start of the year.

The Austin, Texas-based firm is one of the more visible cybersecurity companies in the world and spends heavily on marketing, including Super Bowl ads. At cybersecurity conferences, it's known for large booths displaying massive action-figure statues representing different state-sponsored hacking groups that CrowdStrike technology promises to defend against.

CrowdStrike CEO George Kurtz is among the most highly compensated in the world, recording more than $230 million in total compensation in the last three years. Kurtz is also a driver for a CrowdStrike-sponsored car racing team.

After his initial statement about the problem was criticized for lack of contrition, Kurtz apologized in a later social media post Friday and on NBC's “Today Show.”

“We understand the gravity of the situation and are deeply sorry for the inconvenience and disruption,” he said on X.

Richard Stiennon, a cybersecurity industry analyst, said this was a historic mistake by CrowdStrike.

“This is easily the worst faux pas, technical faux pas or glitch of any security software provider ever,” said Stiennon, who has tracked the cybersecurity industry for 24 years.

While the problem is an easy technical fix, he said, it’s impact could be long-lasting for some organizations because of the hands-on work needed to fix each affected computer. “It’s really, really difficult to touch millions of machines. And people are on vacation right now, so, you know, the CEO will be coming back from his trip to the Bahamas in a couple of weeks and he won’t be able to use his computers.”

Stiennon said he did not think the outage revealed a bigger problem with the cybersecurity industry or CrowdStrike as a company.

“The markets are going to forgive them, the customers are going to forgive them, and this will blow over,” he said.

Forrester analyst Allie Mellen credited CrowdStrike for clearly telling customers what they need to do to fix the problem. But to restore trust, she said there will need to be a deeper look at what occurred and what changes can be made to prevent it from happening again.

“A lot of this is likely to come down to the testing and software development process and the work that they’ve put into testing these kinds of updates before deployment,” Mellen said. “But until we see the complete retrospective, we won’t know for sure what the failure was.”

Houston engineers develop breakthrough device to advance spinal cord treatment

future of health

A team of Rice University engineers has developed an implantable probe over a hundred times smaller than the width of a hair that aims to help develop better treatments for spinal cord disease and injury.

Detailed in a recent study published in Cell Reports, the probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement, according to a statement from Rice. The research was supported by the National Institutes of Health, Rice, the California-based Salk Institute for Biological Studies, and the philanthropic Mary K. Chapman Foundation based in Oklahoma.

The soft and flexible sensor was used to record neuronal activity in freely moving mice with high resolution for multiple days. Historically, tracking this level of activity has been difficult for researchers because the spinal cord and its neurons move so much during normal activity, according to the team.

“We developed a tiny sensor, spinalNET, that records the electrical activity of spinal neurons as the subject performs normal activity without any restraint,” Yu Wu, a research scientist at Rice and lead author of the study said in a statement. “Being able to extract such knowledge is a first but important step to develop cures for millions of people suffering from spinal cord diseases.”

The team says that before now the spinal cord has been considered a "black box." But the device has already helped the team uncover new findings about the body's rhythmic motor patterns, which drive walking, breathing and chewing.

Lan Luan (from left), Yu Wu, and Chong Xie are working on the breakthrough device. Photo by Jeff Fitlow/Rice University

"Some (spinal neurons) are strongly correlated with leg movement, but surprisingly, a lot of neurons have no obvious correlation with movement,” Wu said in the statement. “This indicates that the spinal circuit controlling rhythmic movement is more complicated than we thought.”

The team said they hope to explore these findings further and aim to use the technology for additional medical purposes.

“In addition to scientific insight, we believe that as the technology evolves, it has great potential as a medical device for people with spinal cord neurological disorders and injury,” Lan Luan, an associate professor of electrical and computer engineering at Rice and a corresponding author on the study, added in the statement.

Rice researchers have developed several implantable, minimally invasive devices to address health and mental health issues.

In the spring, the university announced that the United States Department of Defense had awarded a four-year, $7.8 million grant to the Texas Heart Institute and a Rice team led by co-investigator Yaxin Wang to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation.

That same month, the university shared news that Professor Jacob Robinson had published findings on minimally invasive bioelectronics for treating psychiatric conditions. The 9-millimeter device can deliver precise and programmable stimulation to the brain to help treat depression, obsessive-compulsive disorder and post-traumatic stress disorder.