Xiaoyu Yang, a graduate student at Rice, is the lead author on a study published in the journal Science on smart cell design. Photo by Jeff Fitlow/ Courtesy Rice University

Bioengineers at Rice University have developed a “new construction kit” for building custom sense-and-respond circuits in human cells, representing a major breakthrough in the field of synthetic biology, which could "revolutionize" autoimmune disease and cancer therapeutics.

In a study published in the journal Science, the team focused on phosphorylation, a cellular process in the body in which a phosphate group is added to a protein, signaling a response. In multicellular organisms, phosphorylation-based signaling can involve a multistage, or a cascading-like effect. Rice’s team set out to show that each cycle in a cascade can be treated as an elementary unit, meaning that they can be reassembled in new configurations to form entirely novel pathways linking cellular inputs and outputs.

Previous research on using phosphorylation-based signaling for therapeutic purposes has focused on re-engineering pathways.

“This opens up the signaling circuit design space dramatically,” Caleb Bashor, assistant professor of bioengineering and biosciences and corresponding author on the study, said in a news release. “It turns out, phosphorylation cycles are not just interconnected but interconnectable … Our design strategy enabled us to engineer synthetic phosphorylation circuits that are not only highly tunable but that can also function in parallel with cells’ own processes without impacting their viability or growth rate.”

Bashor is the deputy director for the Rice Synthetic Biology Institute, which launched last year.

The Rice lab's sense-and-respond cellular circuit design is also innovative because phosphorylation occurs rapidly. Thus, the new circuits could potentially be programmed to respond to physiological events in minutes, compared to other methods, which take hours to activate.

Rice’s team successfully tested the circuits for sensitivity and their ability to respond to external signals, such as inflammatory issues. The researchers then used the framework to engineer a cellular circuit that can detect certain factors, control autoimmune flare-ups and reduce immunotherapy-associated toxicity.

“This work brings us a whole lot closer to being able to build ‘smart cells’ that can detect signs of disease and immediately release customizable treatments in response,” Xiaoyu Yang, a graduate student in the Systems, Synthetic and Physical Biology Ph.D. program at Rice who is the lead author on the study, said in a news release.

Ajo-Franklin, a professor of biosciences, bioengineering, chemical and biomolecular engineering and a Cancer Prevention and Research Institute of Texas Scholar, added “the Bashor lab’s work vaults us forward to a new frontier — controlling mammalian cells’ immediate response to change.”

Cemvita aims to capitalize on Brazil’s regulatory framework around biodiesel blending and Sustainable Aviation Fuel.Photo courtesy of Cemvita

Pioneering Houston biotech startup expands to Brazil for next phase

On the Move

Houston biotech company Cemvita has expanded into Brazil. The company officially established a new subsidiary in the country under the same name.

According to an announcement made earlier this month, the expansion aims to capitalize on Brazil’s progressive regulatory framework, including Brazil’s Fuel of the Future Law, which was enacted in 2024. The company said the expansion also aims to coincide with the 2025 COP30, the UN’s climate change conference, which will be hosted in Brazil in November.

Cemvita utilizes synthetic biology to transform carbon emissions into valuable bio-based chemicals.

“For decades Brazil has pioneered the bioeconomy, and now the time has come to create the future of the circular bioeconomy,” Moji Karimi, CEO of Cemvita, said in a news release. “Our vision is to combine the innovation Cemvita is known for with Brazil’s expertise and resources to create an ecosystem where waste becomes opportunity and sustainability drives growth. By joining forces with Brazilian partners, Cemvita aims to build on Brazil’s storied history in the bioeconomy while laying the groundwork for a circular and sustainable future.”

The Fuel of the Future Law mandates an increase in the biodiesel content of diesel fuel, starting from 15 percent in March and increasing to 20 percent by 2030. It also requires the adoption of Sustainable Aviation Fuel (SAF) and for domestic flights to reduce greenhouse gas emissions by 1 percent starting in 2027, growing to 10 percent reduction by 2037.

Cemvita agreed to a 20-year contract that specified it would supply up to 50 million gallons of SAF annually to United Airlines in 2023.

"This is all made possible by our innovative technology, which transforms carbon waste into value,” Marcio Da Silva, VP of Innovation, said in a news release. “Unlike traditional methods, it requires neither a large land footprint nor clean freshwater, ensuring minimal environmental impact. At the same time, it produces high-value green chemicals—such as sustainable oils and biofuels—without competing with the critical resources needed for food production."

In 2024, Cemvita became capable of generating 500 barrels per day of sustainable oil from carbon waste at its first commercial plant. As a result, Cemvita quadrupled output at its Houston plant. The company had originally planned to reach this milestone in 2029.

---

This story originally appeared on our sister site, EnergyCapitalHTX.

Thanks to technology advancements, Cemvita is now capable of generating 500 barrels per day of sustainable oil from carbon waste at its first commercial plant. Photo via cemvita.com

Houston company's sustainable oil product reaches milestone production capacity 5 years early

overachieving

Houston-based biotech company Cemvita has achieved a key production goal five years ahead of schedule.

Thanks to technology advancements, Cemvita is now capable of generating 500 barrels per day of sustainable oil from carbon waste at its first commercial plant. As a result, Cemvita has quadrupled output at the Houston plant. The company had planned to reach this milestone in 2029.

Cemvita, founded in 2017, says this achievement paves the way for increased production capacity, improved operational efficiency, and an elevated advantage in the sustainable oil market.

“What’s so amazing about synthetic biology is that humans are just scratching the surface of what’s possible,” says Moji Karimi, co-founder and CEO of Cemvita. “Our focus on the first principles has allowed us to design and create new biotech more cheaply and faster than ever before.”

The production achievement follows Cemvita’s recent breakthrough in development of a solvent-free extraction bioprocess.

In 2023, United Airlines agreed to buy up to one billion gallons of sustainable aviation fuel from Cemvita’s first full-scale plant over the course of 20 years.

Cemvita’s investors include the UAV Sustainable Flight Fund, an investment arm of Chicago-based United; Oxy Low Carbon Ventures, an investment arm of Houston-based energy company Occidental Petroleum; and Japanese equipment and machinery manufacturer Mitsubishi Heavy Industries.

The new collaborative hub will foster research into cell therapies, artificial intelligence, nanotechnologies, and more. Photo via tmc.edu

Houston health care leaders announce new hub for cancer-fighting bioengineering

team work

Two Houston organizations recently announced a new hub that will focus on developing cell therapies, nanotechnologies, cancer vaccines, artificial intelligence, and molecular imaging.

Rice University and The University of Texas MD Anderson Cancer Center have teamed up to “drive industry growth and advance life-saving technologies” through the newly established Cancer Bioengineering Collaborative, according to a news release announcing the initiative.

The collaboration between the two institutions includes fundamental and translational cancer research, developing new technologies for cancer detection and therapy, and securing external funding in support of further research and training.

Leading the hub will be Rice researcher and Cancer Prevention and Research Institute of Texas (CPRIT) scholar Gang Bao and MD Anderson’s Dr. Jeffrey Molldrem.

“There is tremendous potential in bringing together experts in engineering and cancer as part of this focused, collaborative framework that is truly unique, not only owing to the complementary nature of the respective strengths but also because this is the first formal joint research initiative of its kind between the two institutions,” says Bao, department chair and Foyt Family Professor of Bioengineering, professor of chemistry, materials science and nanoengineering and mechanical engineering, in the release.

The joint effort will also host monthly seminars focused on cancer bioengineering, annual retreats to highlight research and international leaders in cancer and bioengineering, and also a seed grant program to fund research projects in the early stages of development.

“From fundamental discoveries in cancer science, tumor immunology and patient care to innovative engineering advances in drug delivery systems, nanostructures and synthetic biology, there is great potential for enabling cross-disciplinary collaboration to develop new technologies and approaches for detecting, monitoring and treating cancer,” Molldrem, chair of Hematopoietic Biology & Malignancy at MD Anderson, says in the release. “Our goal is to bridge the gap between bioengineering and cancer research to create transformative solutions that significantly improve patient outcomes.”

Dr. Jeff Molldrem (left) and Gang Bao will lead the new collaborative hub. Photo via MD Anderson

The new Rice Synthetic Biology Institute is part of an $82 million investment the university put toward synthetic biology, neuroengineering, and physical biology in 2018. Photo via Rice.edu

Houston university launches new institute for synthetic biology

new to Hou

Rice University announced this month that it has officially launched the new Rice Synthetic Biology Institute.

The institute aims to strengthen the synthetic biology community across disciplines at the university, according to an announcement from Rice. It is part of an $82 million investment the university put toward synthetic biology, neuroengineering, and physical biology in 2018.

RSBI will be led by Caroline Ajo-Franklin, professor of biosciences, bioengineering, and chemical and biomolecular engineering, with support from a faculty steering committee.

Caroline Ajo-Franklin, professor of biosciences, bioengineering, and chemical and biomolecular engineering, will lead the new institute. Photo via Rice.edu

“At Rice, we have such deep expertise in synthetic biology,” Ajo-Franklin said in the announcement. “Connecting that deep expertise through this institute will lead to better science and more innovation.”

Synthetic biology is a discipline in which "researchers design living systems with new properties to address societal needs," according to Rice, with applications in medicine, manufacturing and environmental sustainability.

The university says that there are currently 18 faculty and more than 100 students and postdoctoral scholars at Rice working in this field within the schools of engineering and natural sciences.

The institute will initially focus on four research themes:

  1. Controlling the biological synthesis and patterning of proteins and cells into living materials that self-replicate and self-repair across a range of length scales
  2. Understanding cells as natural sensors and repurposing them into living therapeutics to detect and treat diseases, maintain health and prevent infections
  3. Developing living electronics to convert biochemical information into information-dense electronic signals in real-time at the cell-material interface
  4. Supporting cross-cutting scholarship aimed at accelerating the Design-Build-Test-Learn cycle and understanding the ethical, legal and social implications of translating these technologies into the public domain.

“Rice University is an amazing place to learn, teach, research and innovate,” Ramamoorthy Ramesh, executive vice president for research, added. “The Rice Synthetic Biology Institute will ensure that our researchers are recognized on the international stage for the life-changing work they are doing in Houston and around the world.”

Last year, Rice also launched the new Center for Human Performance with Houston Methodist inside Rice’s Tudor Fieldhouse. The interdisciplinary space aims to advance the study of exercise physiology, injury prevention, and rehabilitation while serving Rice student-athletes.

The university also unveiled another massive, collaborative space this academic year: The 250,000-square-foot Ralph S. O’Connor Building for Engineering and Science. Click here to read more about the state-of-the-art building.

Veronica Wu, founder of First Bight Ventures, joins the Houston Innovators Podcast to outline Houston's opportunities in synthetic biology and biomanufacturing. Photo courtesy

Investor advocates now is the time to position Houston as a leading biomanufacturing hub

houston innovators podcast episode 178

Houston has all the ingredients to be a successful synthetic biology hub, says Veronica Wu. She believes so strongly in this that she relocated to Houston from Silicon Valley just over a year ago to start a venture capital firm dedicated to the field. Since then, she's doubled down on her passion for Houston leading in biotech — especially when it comes to one uniquely Houston opportunity: biomanufacturing.

While Houston's health care innovation scene is actively deploying synthetic biology applications, Wu points to Houston-based Solugen, a plant-based chemical producer, as an example of what Houston has to offer at-scale industrial biomanufacturing. Houston has the workforce and the physical space available for more of these types of biomanufacturing plants, which have a huge potential to move the needle on reducing carbon emissions.

"This is really fundamental technology that's going to change the paradigm and whole dialogue of how we are making a significant impact in reducing a carbon footprint and improving sustainability," says Wu, founder and managing partner of First Bight Ventures, on the Houston Innovators Podcast.

Several aspects — government funding, corporate interest, advances in technology — have converged to make it an ideal time for synthetic biology innovators and investors, Wu explains on the show, and she has an idea of what Houston needs to secure its spot as a leader in the space: The BioWell.

First introduced at a Houston Tech Rodeo event at the Texas Medical Center's Innovation Factory, The BioWell is a public-private partnership that aims to provide access to pilot and lab space, mentorship and programming, and more support that biomanufacturing innovators critically need.

"The way we envision The BioWell is it will provide a holistic, curated support for startups to be able to get across the Valley of Death," Wu says, explaining that startups transitioning from research and development into commercialization need extra support. The BioWell will provide that, as well as allow more engagement from corporations, investors, and other players.

Now that her plans for The BioWell have been announced, Wu is looking for those who want to be a part of it.

She shares more about her mission and what's next for First Bight Ventures on the podcast. Listen to the interview below — or wherever you stream your podcasts — and subscribe for weekly episodes.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston students develop new device to prepare astronauts for outer space

space race

Rice University students from the George R. Brown School of Engineering and Computing designed a space exercise harness that is comfortable, responsive, and adaptable and has the potential to assist with complex and demanding spacewalks.

A group of students—Emily Yao, Nikhil Ashri, Jose Noriega, Ben Bridges and graduate student Jack Kalicak—mentored by assistant professor of mechanical engineering Vanessa Sanchez, modernized harnesses that astronauts use to perform rigorous exercises. The harnesses are particularly important in preparing astronauts for a reduced-gravity space environment, where human muscles and bones atrophy faster than they do on Earth. However, traditional versions of the harnesses had many limitations that included chafing and bruising.

The new harnesses include sensors for astronauts to customize their workouts by using real-time data and feedback. An additional two sensors measure astronauts’ comfort and exercise performance based on temperature and humidity changes during exercise and load distribution at common pressure points.

“Our student-led team addressed this issue by adding pneumatic padding that offers a customized fit, distributes pressure over a large surface area to reduce discomfort or injuries and also seamlessly adapts to load shifts — all of which together improved astronauts’ performance,” Sanchez said in a news release. “It was very fulfilling to watch these young engineers work together to find innovative and tangible solutions to real-world problems … This innovative adjustable exercise harness transforms how astronauts exercise in space and will significantly improve their health and safety during spaceflights.”

The project was developed in response to a challenge posted by the HumanWorks Lab and Life Science Labs at NASA and NASA Johnson Space Center for the 2025 Technology Collaboration Center’s (TCC) Wearables Workshop and University Challenge, where teams worked to solve problems for industry leaders.

Rice’s adaptive harness won the Best Challenge Response Award. It was funded by the National Science Foundation and Rice’s Office of Undergraduate Research and Inquiry.

“This challenge gave us the freedom to innovate and explore possibilities beyond the current harness technology,” Yao added in the release. “I’m especially proud of how our team worked together to build a working prototype that not only has real-world impact but also provides a foundation that NASA and space companies can build and iterate upon.”

Houston hospital performs first fully robotic heart transplant in the U.S.

robotic surgery

A team at Baylor St. Luke’s Medical Center, led by Dr. Kenneth Liao, successfully performed the first fully robotic heart transplant in the United States earlier this year, the Houston hospital recently shared.

Liao, a professor and chief of cardiothoracic transplantation and circulatory support at Baylor College of Medicine and chief of cardiothoracic transplantation and mechanical circulatory support at Baylor St. Luke’s Medical Center, used a surgical robot to implant a new heart in a 45-year-old male patient through preperitoneal space in the abdomen by making small incisions.

The robotic technology allowed the medical team to avoid opening the chest and breaking the breast bone, which reduces the risk of infection, blood transfusions and excessive bleeding. It also leads to an easier recovery, according to Liao.

"Opening the chest and spreading the breastbone can affect wound healing and delay rehabilitation and prolong the patient's recovery, especially in heart transplant patients who take immunosuppressants," Liao said in a news release. "With the robotic approach, we preserve the integrity of the chest wall, which reduces the risk of infection and helps with early mobility, respiratory function and overall recovery."

The patient received the heart transplant in March, after spending about four months in the hospital due to advanced heart failure. According to Baylor, he was discharged home after recovering from the surgery in the hospital for a month without complications.

"This transplant shows what is possible when innovation and surgical experience come together to improve patient care," Liao added in the release. "Our goal is to offer patients the safest, most effective and least invasive procedures, and robotic technology allows us to do that in extraordinary ways."

7 can't miss Houston business and innovation events for July

where to be

Editor's note: While many Houstonians are flocking to vacation destinations, there are still plenty of opportunities to network and learn at tech and business events for those sticking close to home this month. From an inaugural biotech summit to the 12th edition of a local pitch showcase, here are the Houston business and innovation events you can't miss in July and how to register. Please note: this article might be updated to add more events.

July 10 - Out in Tech Mixer 

Out in Tech Houston provides an inclusive networking space for LGBTQ+ people and allies working in tech. Check out this relaxed, social-mixer event, hosted on the second Thursday of every month.

This event is Thursday, July 10, from 7 to 8:30 p.m. at Second Draught. Register here.

July 14 – Latinas in Tech Coworking Day 

Connect with fellow Latinas in the industry at Sesh Coworking. Network or work alongside peers, board members and community leaders in a shared office environment.

This event is Monday, July 14, from 9-11:30 a.m. at Sesh Coworking. Find more information here.

July 17 – UTMB Innovation VentureX Summit

Attend the inaugural UTMB Innovation VentureX Summit, where innovators, entrepreneurs, researchers and investors will dive into the future of biotech. Expect panel discussions, fireside chats, a technology showcase and networking opportunities.

This event is Thursday, July 17, from 7:30 a.m.-4 p.m. at The University of Texas Medical Branch at Galveston. Find more information here.

July 17 – Open Project Night 

Collaborate on solutions for some of Houston’s most pressing issues at this month’s Open Project Night at Impact Hub Houston. Hear from guest speakers and listen to open mic pitches. July’s theme is Decent Work & Economic Growth.

This event is Thursday, July 17, from 5:30-7:30 p.m at Impact Hub Houston. Register here.

July 24 – NASA Tech Talks

Every fourth Thursday of the month, NASA experts, including longtime engineer Montgomery Goforth, present on technology development challenges NASA’s Johnson Space Center and the larger aerospace community are facing and how they can be leveraged by Houston’s innovation community. Stick around after for drinks and networking at Second Draught.

This event is Thursday, July 24, from 6-7 p.m. at the Ion. Register here.

July 30 – Ion Bike Club

Join Bike Houston at the Ion for a 45-minute guided cruise through the Ion District and Midtown. Afterward, enjoy a complimentary beer and network with like-minded riders at Second Draught.

This event is Wednesday, July 30, from 5:30-7:30 p.m. at the Ion. Register here.

July 31 – Bayou Startup Showcase

Hear pitches from startups and small businesses from Rice University’s OwlSpark and the University of Houston’s RED Labs accelerators at the 12th annual Bayou Startup Showcase. Read more about this year’s teams here.

This event is Thursday, July 31, from 3:30-7 p.m. at the Ion. Register here.