Tvardi Therapeutics and Cara Therapeutics are expected to merge and headquarter in Houston. Photo via Getty Images

Houston-based Tvardi Therapeutics and Cara Therapeutics announced the companies have entered into a definitive merger agreement to combine in an all-stock transaction. Once completed, Houston will house the headquarters.

Tvardi is a clinical-stage biopharmaceutical company that focuses on the development of novel, oral, and small molecule therapies that target STAT3 to treat fibrosis-driven diseases. Tvardi will merge with a wholly owned subsidiary of Cara.

Once complete, the pre-merger Cara Therapeutics stockholders are expected to own approximately 17 percent of the combined company and pre-merger Tvardi Therapeutics investors are expected to own 83 percent of the combined company. Prior to adjustment from the issuance of the shares in the recently completed Tvardi financing and assuming Cara, which went public in 2014, has net cash at closing of between $22.9 million and $23.1 million with the percentage of the combined company that pre-merger Cara stockholders and pre-merger Tvardi stockholders will own upon the closing of the merger, which is subject to further adjustment if Cara’s net cash balance falls outside of the range.

“As we approach meaningful value inflection points next year, including two Phase 2 readouts of our lead program in idiopathic pulmonary fibrosis, followed by the readout in our hepatocellular carcinoma program, this merger, the recently completed financing, and becoming a publicly traded company give us access to the critical funding required to further advance our promising pipeline programs that address significant unmet needs,” Imran Alibhai, CEO of Tvardi Therapeutics, says in a news release.

Also, Tvardi has completed an approximately $28 million private financing from a syndicate of new and existing institutional investors. With the cash from both companies at closing and the proceeds of this financing, the post-merger company plans to have cash to fund its operating expenses and capital expenditure requirements into the second half of 2026.

“I am grateful to the Cara Board, leadership team, and shareholders who share our vision of Tvardi that is well-positioned to introduce effective, new treatment options to patients suffering from serious, chronic, fibrosis-driven diseases,” Alibhai continues.

In 2021, Tvardi emerged from stealth and closed a $74 million series B funding round led by New York-based Slate Path Capital, Florida-based Palkon Capital, Denver-based ArrowMark Partners, and New York-based 683 Capital, with continued support and participation by existing investors, including Houston-based Sporos Bioventures.

Tvardi Therapeutics Inc. has fresh funds to support its drug's advancement in clinical trials. Photo via Getty Images

Cancer-fighting company based in Houston emerges from stealth and snags $74M in its latest round

fresh funds

A Houston-based clinical-stage biopharmaceutical company has raised millions in its latest round.

Tvardi Therapeutics Inc. closed its $74 million series B funding round led by new investors New York-based Slate Path Capital, Florida-based Palkon Capital, Denver-based ArrowMark Partners, and New York-based 683 Capital, with continued support and participation by existing investors, including Houston-based Sporos Bioventures.

"We are thrilled to move out of stealth mode and partner with this lineup of long-term institutional investors," says Imran Alibhai, CEO at Tvardi. "With this financing we are positioned to advance the clinical development of our small molecule inhibitors of STAT3 into mid-stage trials as well as grow our team."

Through Slate Path Capital's investment, Jamie McNab, partner at the firm, will join Tvardi's board of directors.

"Tvardi is the leader in the field of STAT3 biology and has compelling proof of concept clinical data," McNab says in the release. "I look forward to partnering with the management team to advance Tvardi's mission to develop a new class of breakthrough medicines for cancer, chronic inflammation, and fibrosis."

Tvardi's latest fundraise will go toward supporting the company's products in their mid-stage trials for cancer and fibrosis. According to the release, Tvardi's lead product, TTI-101, is being studied in a Phase 1 trial of patients with advanced solid tumors who have failed all lines of therapy. So far, the drug has been well-received and shown multiple durable radiographic objective responses in the cancer patients treated.

Dr. Keith Flaherty, who is a member of Tvardi's scientific advisory board and professor of medicine at Harvard Medical School, offered his support of the company.

"STAT3 is a compelling and validated target. Beyond its clinical activity, Tvardi's lead molecule, TTI-101, has demonstrated direct downregulation of STAT3 in patients," he says in the release. "As a physician, I am eager to see the potential of Tvardi's molecules in diseases of high unmet medical need where STAT3 is a key driver."

After a recent raise, this Houston biotech company is headed to first-in-human clinical trials. Photo via stellanovatx.com

JLABS-based cancer therapies company closes $15.5M series A led by Houston bioventure

fresh funds

Houston-based Stellanova Therapeutics closed a $15.5 million series A financing this month, which will advance the company's first-in-human clinical trials for oncology and help build out its team.

Stellanova is a resident company at Johnson & Johnson's biotech incubator in the TMC (JLABS @ TMC) and is one of four entities that make up cancer and disease biotech company Sporos Bioventures, which officially launched last month after closing a $38.1 million series A of its own.

Stellanova is focused on advancing therapies for cancers that are resistant to current treatments, like chemotherapy and immune therapies. According to a release, it has seen unprecedented anti-tumor activity in preclinical models of pancreas and triple negative breast cancer through the use of its lead antibody, which targets DKK3, a factor secreted by cancer-associated fibroblasts that spur tumors.

The company was founded based on research out of Dr. Rosa Hwang's lab at Houston's MD Anderson Cancer Center.

"We are thrilled to bring Stellanova into the Sporos group of companies. Stellanova means 'new star,' and it is clear the Stellanova team embraces this namesake with their entirely new approach to treating cancer," Harold Levy, Stellanova and Sporos founder and board member said in the statement. "We have been impressed by Stellanova's accomplishments and look forward to being involved in the advancement of the company's platform, one that we believe has the potential to directly combat the most devastating of cancers."

In conjunction with the financing, Stellanova also announced that it has named JLABS @ TMC founding team member Emmanuelle Schuler as the company's inaugural CEO.

Stellanova joins Sporos's Tvardi Therapeutics as it moves toward clinical trials. Tvardi, named a "most promising" by BioHouston and the Rice Alliance in December, is in Phase 1 clinical trial of its STAT3 oral inhibitor for treatment of cancer, inflammation and fibrosis.

Asylia Therapeutics and Nirogy Therapeutics were also founding entities of Sporos. The companies are in the proof of concept and discovery phases and focus on cancer, autoimmune diseases, infectious diseases, and inflammatory diseases.

A Houston biotech company has raised $38.1 million. Photo by Dwight C. Andrews/Greater Houston Convention and Visitors Bureau

Houston-based cancer and disease bio-venture launches after $38.1M series A

money moves

Sporos Bioventures LLC launched this month after closing a $38.1 million round of series A financing.

The Houston-based biotech company aims to accelerate the development of breakthrough therapies for cancer and immune diseases by sharing resources, capital, access to clinical trial infrastructure, and talent from within its knowledgeable team of biotech executives, entrepreneurs, academic scholars, and investors. The company was launched with four entities: Tvardi Therapeutics, Asylia Therapeutics, Nirogy Therapeutics, and Stellanova Therapeutics.

The most advanced of the four entities, Tvardi, is currently in Phase 1 clinical trial to evaluate it's STAT3 oral inhibitor. It was named a "most promising" life sciences company at the 2020 Texas Life Science Forum, hosted by BioHouston and the Rice Alliance in December. The remaining entities are in the development stages and are focused on cancer, autoimmune disease, fibrosis, and tumor growth, among other conditions.

"Sporos was founded to accelerate the development of new medicines by addressing inefficiencies and risk in the establishment of new biotech companies," Peter Feinberg, Sporos co-founder, said in a statement. "By leveraging our extensive network, including the Texas Medical Center, we first identify transformative scientific opportunities and then deploy our top-tier talent, funding, and operational support to drive these insights into a growing pipeline of first-in-class treatment options."

In conjunction with the launch, Sporos named Michael Wyzga as the company's founding CFO. Wyzga was previously CFO at Genzyme for 12 years and has held various senior-level positions in the industry.

"By strategically deploying valuable resources to young companies that would not typically be supported by top-tier seasoned talent and infrastructure, we believe that we can efficiently bring a diverse set of therapies through clinical development," Wyzga said in a statement. "I am thrilled to join a team with decades of scientific and operational expertise and look forward to guiding our strategic and financial growth."

Wyzga joins a team of seasoned leaders in the biotech and cancer research fields, including Dr. Ronald DePinho, professor of Cancer Biology and past president of MD Anderson, who will serve as the chair of Sporos' Strategic Advisory Council. Jeno Gyuris, a biotech executive in oncology drug discovery and development with more than 25 years of experience, will serve as chief science officer. And Alex Cranberg, an experienced active early-stage biotech investor, serves as director.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New Rice Brain Institute partners with TMC to award inaugural grants

brain trust

The recently founded Rice Brain Institute has named the first four projects to receive research awards through the Rice and TMC Neuro Collaboration Seed Grant Program.

The new grant program brings together Rice faculty with clinicians and scientists at The University of Texas Medical Branch, Baylor College of Medicine, UTHealth Houston and The University of Texas MD Anderson Cancer Center. The program will support pilot projects that address neurological disease, mental health and brain injury.

The first round of awards was selected from a competitive pool of 40 proposals, and will support projects that reflect Rice Brain Institute’s research agenda.

“These awards are meant to help teams test bold ideas and build the collaborations needed to sustain long-term research programs in brain health,” Behnaam Aazhang, Rice Brain Institute director and co-director of the Rice Neuroengineering Initiative, said in a news release.

The seed funding has been awarded to the following principal investigators:

  • Kevin McHugh, associate professor of bioengineering and chemistry at Rice, and Peter Kan, professor and chair of neurosurgery at the UTMB. McHugh and Kan are developing an injectable material designed to seal off fragile, abnormal blood vessels that can cause life-threatening bleeding in the brain.
  • Jerzy Szablowski, assistant professor of bioengineering at Rice, and Jochen Meyer, assistant professor of neurology at Baylor. Szablowski and Meyer are leading a nonsurgical, ultrasound approach to deliver gene-based therapies to deep brain regions involved in seizures to control epilepsy without implanted electrodes or invasive procedures.
  • Juliane Sempionatto, assistant professor of electrical and computer engineering at Rice, and Aaron Gusdon, associate professor of neurosurgery at UTHealth Houston. Sempionatto and Gusdon are leading efforts to create a blood test that can identify patients at high risk for delayed brain injury following aneurysm-related hemorrhage, which could lead to earlier intervention and improved outcomes.
  • Christina Tringides, assistant professor of materials science and nanoengineering at Rice, and Sujit Prabhu, professor of neurosurgery at MD Anderson, who are working to reduce the risk of long-term speech and language impairment during brain tumor removal by combining advanced brain recordings, imaging and noninvasive stimulation.

The grants were facilitated by Rice’s Educational and Research Initiatives for Collaborative Health (ENRICH) Office. Rice says that the unique split-funding model of these grants could help structure future collaborations between the university and the TMC.

The Rice Brain Institute launched this fall and aims to use engineering, natural sciences and social sciences to research the brain and reduce the burden of neurodegenerative, neurodevelopmental and mental health disorders. Last month, the university's Shepherd School of Music also launched the Music, Mind and Body Lab, an interdisciplinary hub that brings artists and scientists together to study the "intersection of the arts, neuroscience and the medical humanities." Read more here.

Your data center is either closer than you think or much farther away

houston voices

A new study shows why some facilities cluster in cities for speed and access, while others move to rural regions in search of scale and lower costs. Based on research by Tommy Pan Fang (Rice Business) and Shane Greenstein (Harvard).

Key findings:

  • Third-party colocation centers are physical facilities in close proximity to firms that use them, while cloud providers operate large data centers from a distance and sell access to virtualized computing resources as on‑demand services over the internet.
  • Hospitals and financial firms often require urban third-party centers for low latency and regulatory compliance, while batch processing and many AI workloads can operate more efficiently from lower-cost cloud hubs.
  • For policymakers trying to attract data centers, access to reliable power, water and high-capacity internet matter more than tax incentives.

Recent outages and the surge in AI-driven computing have made data center siting decisions more consequential than ever, especially as energy and water constraints tighten. Communities invest public dollars on the promise of jobs and growth, while firms weigh long-term commitments to land, power and connectivity.

Against that backdrop, a critical question comes into focus: Where do data centers get built — and what actually drives those decisions?

A new study by Tommy Pan Fang (Rice Business) and Shane Greenstein (Harvard Business School) provides the first large-scale statistical analysis of data center location strategies across the United States. It offers policymakers and firms a clearer starting point for understanding how different types of data centers respond to economic and strategic incentives.

Forthcoming in the journal Strategy Science, the study examines two major types of infrastructure: third-party colocation centers that lease server space to multiple firms, and hyperscale cloud centers owned by providers like Amazon, Google and Microsoft.

Two Models, Two Location Strategies

The study draws on pre-pandemic data from 2018 and 2019, a period of relative geographic stability in supply and demand. This window gives researchers a clean baseline before remote work, AI demand and new infrastructure pressures began reshaping internet traffic patterns.

The findings show that data centers follow a bifurcated geography. Third-party centers cluster in dense urban markets, where buyers prioritize proximity to customers despite higher land and operating costs. Cloud providers, by contrast, concentrate massive sites in a small number of lower-density regions, where electricity, land and construction are cheaper and economies of scale are easier to achieve.

Third-party data centers, in other words, follow demand. They locate in urban markets where firms in finance, healthcare and IT value low latency, secure storage, and compliance with regulatory standards.

Using county-level data, the researchers modeled how population density, industry mix and operating costs predict where new centers enter. Every U.S. metro with more than 700,000 residents had at least one third-party provider, while many mid-sized cities had none.

ImageThis pattern challenges common assumptions. Third-party facilities are more distributed across urban America than prevailing narratives suggest.

Customer proximity matters because some sectors cannot absorb delay. In critical operations, even slight pauses can have real consequences. For hospital systems, lag can affect performance and risk exposure. And in high-frequency trading, milliseconds can determine whether value is captured or lost in a transaction.

“For industries where speed is everything, being too far from the physical infrastructure can meaningfully affect performance and risk,” Pan Fang says. “Proximity isn’t optional for sectors that can’t absorb delay.”

The Economics of Distance

For cloud providers, the picture looks very different. Their decisions follow a logic shaped primarily by cost and scale. Because cloud services can be delivered from afar, firms tend to build enormous sites in low-density regions where power is cheap and land is abundant.

These facilities can draw hundreds of megawatts of electricity and operate with far fewer employees than urban centers. “The cloud can serve almost anywhere,” Pan Fang says, “so location is a question of cost before geography.”

The study finds that cloud infrastructure clusters around network backbones and energy economics, not talent pools. Well-known hubs like Ashburn, Virginia — often called “Data Center Alley” — reflect this logic, having benefited from early network infrastructure that made them natural convergence points for digital traffic.

Local governments often try to lure data centers with tax incentives, betting they will create high-tech jobs. But the study suggests other factors matter more to cloud providers, including construction costs, network connectivity and access to reliable, affordable electricity.

When cloud centers need a local presence, distance can sometimes become a constraint. Providers often address this by working alongside third-party operators. “Third-party centers can complement cloud firms when they need a foothold closer to customers,” Pan Fang says.

That hybrid pattern — massive regional hubs complementing strategic colocation — may define the next phase of data center growth.

Looking ahead, shifts in remote work, climate resilience, energy prices and AI-driven computing may reshape where new facilities go. Some workloads may move closer to users, while others may consolidate into large rural hubs. Emerging data-sovereignty rules could also redirect investment beyond the United States.

“The cloud feels weightless,” Pan Fang says, “but it rests on real choices about land, power and proximity.”

---

This article originally appeared on Rice Business Wisdom. Written by Scott Pett.

Pan Fang and Greenstein (2025). “Where the Cloud Rests: The Economic Geography of Data Centers,” forthcoming in Strategy Science.

Houston climbs to top 10 spot on North American tech hubs index

tech report

Houston already is the Energy Capital of the World, and now it’s gaining ground as a tech hub.

On Site Selection magazine’s 2026 North American Tech Hub Index, Houston jumped to No. 10 from No. 16 last year. The index relies on data from Site Selection as well as data from CBRE, CompTIA and TeleGeography to rank the continent’s tech hotspots. The index incorporates factors such as internet connectivity, tech talent and facility projects for tech companies.

In 2023, the Greater Houston Partnership noted the region had “begun to receive its due as a prominent emerging tech hub, joining the likes of San Francisco and Austin as a major player in the sector, and as a center of activity for the next generation of innovators and entrepreneurs.”

The Houston-area tech sector employs more than 230,000 people, according to the partnership, and generates an economic impact of $21.2 billion.

Elsewhere in Texas, two other metros fared well on the Site Selection index:

  • Dallas-Fort Worth nabbed the No. 1 spot, up from No. 2 last year.
  • Austin rose from No. 8 last year to No. 7 this year.

San Antonio slid from No. 18 in 2025 to No. 22 in 2026, however.

Two economic development officials in DFW chimed in about the region’s No. 1 ranking on the index:

  • “This ranking affirms what we’ve long seen on the ground — Dallas-Fort Worth is a top-tier technology and innovation center,” said Duane Dankesreiter, senior vice president of research and innovation at the Dallas Regional Chamber. “Our region’s scale, talent base, and diverse strengths … continue to set DFW apart as a national leader.”
  • “Being recognized as the top North American tech hub underscores the strength of the entire Dallas-Fort Worth region as a center of innovation and next-generation technology,” said Robert Allen, president and CEO of the Fort Worth Economic Development Partnership.

While not directly addressing Austin’s Site Selection ranking, Thom Singer, CEO of the Austin Technology Council, recently pondered whether Silicon Hills will grow “into the kind of community that other cities study for the right reasons.”

“Austin tech is not a club. It is not a scene. It is not a hashtag, a happy hour, or any one place or person,” Singer wrote on the council’s blog. “Austin tech is an economic engine and a global brand, built by thousands of people who decided to take a risk, build something, hire others, and be part of a community that is still young enough to reinvent itself.”

South of Austin, Port San Antonio is driving much of that region’s tech activity. Occupied by more than 80 employers, the 1,900-acre tech and innovation campus was home to 18,400 workers in 2024 and created a local economic impact of $7.9 billion, according to a study by Zenith Economics.

“Port San Antonio is a prime example of how innovation and infrastructure come together to strengthen [Texas’] economy, support thousands of good jobs, and keep Texas competitive on the global stage,” said Kelly Hancock, the acting state comptroller.