fresh funds

Cancer-fighting company based in Houston emerges from stealth and snags $74M in its latest round

Tvardi Therapeutics Inc. has fresh funds to support its drug's advancement in clinical trials. Photo via Getty Images

A Houston-based clinical-stage biopharmaceutical company has raised millions in its latest round.

Tvardi Therapeutics Inc. closed its $74 million series B funding round led by new investors New York-based Slate Path Capital, Florida-based Palkon Capital, Denver-based ArrowMark Partners, and New York-based 683 Capital, with continued support and participation by existing investors, including Houston-based Sporos Bioventures.

"We are thrilled to move out of stealth mode and partner with this lineup of long-term institutional investors," says Imran Alibhai, CEO at Tvardi. "With this financing we are positioned to advance the clinical development of our small molecule inhibitors of STAT3 into mid-stage trials as well as grow our team."

Through Slate Path Capital's investment, Jamie McNab, partner at the firm, will join Tvardi's board of directors.

"Tvardi is the leader in the field of STAT3 biology and has compelling proof of concept clinical data," McNab says in the release. "I look forward to partnering with the management team to advance Tvardi's mission to develop a new class of breakthrough medicines for cancer, chronic inflammation, and fibrosis."

Tvardi's latest fundraise will go toward supporting the company's products in their mid-stage trials for cancer and fibrosis. According to the release, Tvardi's lead product, TTI-101, is being studied in a Phase 1 trial of patients with advanced solid tumors who have failed all lines of therapy. So far, the drug has been well-received and shown multiple durable radiographic objective responses in the cancer patients treated.

Dr. Keith Flaherty, who is a member of Tvardi's scientific advisory board and professor of medicine at Harvard Medical School, offered his support of the company.

"STAT3 is a compelling and validated target. Beyond its clinical activity, Tvardi's lead molecule, TTI-101, has demonstrated direct downregulation of STAT3 in patients," he says in the release. "As a physician, I am eager to see the potential of Tvardi's molecules in diseases of high unmet medical need where STAT3 is a key driver."

Trending News

Building Houston

 
 

This UH engineer is hoping to make his mark on cancer detection. Photo via UH.edu

Early stage cancer is hard to detect, mostly because traditional diagnostic imaging cannot detect tumors smaller than a certain size. One Houston innovator is looking to change that.

Wei-Chuan Shih, professor of electrical and computer engineering at the University of Houston's Cullen College of Engineering, recently published his findings in IEEE Sensors journal. According to a news release from UH, the cells around cancer tumors are small — ~30-150nm in diameter — and complex, and the precise detection of these exosome-carried biomarkers with molecular specificity has been elusive, until now.

"This work demonstrates, for the first time, that the strong synergy of arrayed radiative coupling and substrate undercut can enable high-performance biosensing in the visible light spectrum where high-quality, low-cost silicon detectors are readily available for point-of-care application," says Shih in the release. "The result is a remarkable sensitivity improvement, with a refractive index sensitivity increase from 207 nm/RIU to 578 nm/RIU."

Wei-Chuan Shih is a professor of electrical and computer engineering at the University of Houston's Cullen College of Engineering. Photo via UH.edu

What Shih has done is essentially restored the electric field around nanodisks, providing accessibility to an otherwise buried enhanced electric field. Nanodisks are antibody-functionalized artificial nanostructures which help capture exosomes with molecular specificity.

"We report radiatively coupled arrayed gold nanodisks on invisible substrate (AGNIS) as a label-free (no need for fluorescent labels), cost-effective, and high-performance platform for molecularly specific exosome biosensing. The AGNIS substrate has been fabricated by wafer-scale nanosphere lithography without the need for costly lithography," says Shih in the release.

This process speeds up screening of the surface proteins of exosomes for diagnostics and biomarker discovery. Current exosome profiling — which relies primarily on DNA sequencing technology, fluorescent techniques such as flow cytometry, or enzyme-linked immunosorbent assay (ELISA) — is labor-intensive and costly. Shih's goal is to amplify the signal by developing the label-free technique, lowering the cost and making diagnosis easier and equitable.

"By decorating the gold nanodisks surface with different antibodies (e.g., CD9, CD63, and CD81), label-free exosome profiling has shown increased expression of all three surface proteins in cancer-derived exosomes," said Shih. "The sensitivity for detecting exosomes is within 112-600 (exosomes/μL), which would be sufficient in many clinical applications."

Trending News