Houston-based health tech organization had experiments on Blue Origin's last mission. Photo courtesy of Blue Origin

Houston's Translational Research Institute for Space Health, or TRISH, conducted cutting-edge research onboard Blue Origin's New Shepard rocket that launched Friday, November 22.

The NS-28 mission sent private astronauts on an 11-minute suborbital journey past the recognized boundary of space known as the Kármán line, according to Blue Origin's website. While on board, astronauts wore a medical-grade BioButton device, known as a BioIntelliSense, that monitored vital signs and biometric readings.

The findings will add to TRISH's Enhancing eXploration Platforms and ANalog Definition, or EXPAND, program and were the first data sets captured from a suborbital flight.

“This initiative enables TRISH to further our research in space medicine by collecting valuable human health data,” Jimmy Wu, TRISH deputy director and chief engineer and assistant professor at Baylor, said in a statement. “New data from suborbital flights builds our understanding of how the human body responds to spaceflight. This holistic view is key in keeping humans healthy and safe in space.”

The experiments were also TRISH's first on a Blue Origin mission.

TRISH, which is part of BCM’s Center for Space Medicine with partners Caltech and MIT, has launched experiments on numerous space missions to date, with each contributing to its EXPAND platform, which compiles research on human health while in space.

In January, TRISH launched six experiments onboard Houston-based Axiom Space's third private astronaut mission to the International Space Station, known as Ax-3. Prior to that, it also sent experiments on board the Ax-2 in May 2023. The research considered topics ranging from changes in astronauts memory before and after space travel to sleep and motor skills.

TRISH also launched experiments onboard SpaceX's Polaris Dawn mission this fall and on the Inspiration4 all-civilian mission to orbit in 2021.

TRISH published its findings from the Inspiration4 mission in the journal Nature this summer. The study showed that "short-duration missions do not pose a significant health risk" to humans onboard. Read more about the team's findings here.

NASA astronauts Bob Behnken and Doug Hurley are coming home. Photo courtesy of NASA

Here's how to watch the historic NASA/SpaceX splashdown in Houston

return flight

On May 30, the world watched a historic — and uplifting — moment in space travel, as NASA astronauts Robert Behnken and Douglas Hurley blasted off from Earth in a commercial craft created by Elon Musk's SpaceX. The NASA/SpaceX Dragon Endeavour flight was the first launch with astronauts of the SpaceX Crew Dragon spacecraft and Falcon 9 rocket to the International Space Station as part of the agency's Commercial Crew Program.

The SpaceX Demo-2 launch was a success: the duo orbited Earth and eventually boarded the International Space Station; Behnken and Hurley have been stationed there since.''

Now, space fans can watch the return of the NASA/SpaceX Demo-2 test flight, which is scheduled for 1:42 pm CST on Sunday, August 2. The splashdown represents the first return of a commercially built and operated American spacecraft carrying astronauts from the space station, according to NASA. The historic return signifies the close of a mission designed to test SpaceX's human spaceflight system, including launch, docking, splashdown, and recovery operations.

The ever-popular Space Center Houston (the official visitor center of NASA's Johnson Space Center) will stream the live splashdown in a socially distanced event. Visitors can engage in interactive, pop-up science labs to learn about the splashdown process, the specially crafted spacesuits, and more.

To make it a full day of exploration, guests can walk underneath a flown SpaceX Falcon 9 rocket, which is the only Falcon 9 on public display outside of SpaceX's headquarters, and is the same type of rocket used in the Demo-2 mission.

Guests can also take a tour of the Independence Plaza exhibit and walk inside a shuttle replica mounted on top of the historic shuttle carrier aircraft NASA 905. Myriad other experiences await; safety protocols will be in place.

Meanwhile, NASA will broadcast the splashdown coverage on NASA TV and the agency's website beginning early morning on August. 1, with coverage lasting through splashdown on August 2.

------

This article originally ran on CultureMap.

KBR signed a Space Act Agreement with NASA's Johnson Space Center to provide private astronaut training in NASA facilities. Photo via NASA.gov

Houston tech company gets green light from NASA to train commercial astronauts

space tech

For 60 years, Houston-based KBR has supported NASA's astronauts. Now, though a recently signed Space Act Agreement, KBR will also be providing its human spaceflight operation services to commercial companies.

"KBR has pioneered space travel for more than half a century. We will leverage our domain expertise to assist private astronauts with their human spaceflight activities," says Stuart Bradie, KBR President and CEO, in a news release.

The arrangement will include KBR training private astronauts on NASA property — it's the only agreement of its kind. KBR will train for space tasks like operating onboard of the International Space Station, routine operational tasks, health and performance checks, responding to emergencies, and more.

"This historic agreement is a testament to KBR's long standing partnership with NASA. We will continue to work together to propel NASA's mission to fuel a low-Earth orbit economy and advance the future of commercial space," Bradie continues in the release.

Earlier this week, Axiom Space, a Houston-based space tech startup, announced it was selected to design a commercial space flight habitat to be attached to the ISS. KBR is among Axiom's professional partners on the project.

Image---Axiom-modules-connected-to-ISSKBR is one of Axiom Space's partners on its new NASA-sanctioned ISS project. Photo via AxiomSpace.com

The Axiom project includes plans to replace the ISS with a commercially operated space station. The targeted launch date for the commercial destination module is set for late 2024.

Both the Axiom and KBR agreements with NASA are in line with a shift toward commercialization within the space industry. Last June, NASA released its plan to introduce marketing and commercial opportunities to the ISS — with financial expense being a main factory.

"The agency's ultimate goal in low-Earth orbit is to partner with industry to achieve a strong ecosystem in which NASA is one of many customers purchasing services and capabilities at lower cost," reads the release online.

In an interview with InnovationMap last July, NASA Technology Transfer Strategist Steven Gonzalez explains that opening up the space industry to commercial opportunities allows for NASA to focus on research. The government agency doesn't need to worry about a return on investment, like commercial entities have to.

"With the commercial market now, people keep talking about it being a competition, but in reality we need one another," Gonzalez says. "We have 60 years of history that they can stand on and they are doing things differently that we're learning from."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston hospital names leading cancer scientist as new academic head

new hire

Houston Methodist Academic Institute has named cancer clinician and scientist Dr. Jenny Chang as its new executive vice president, president, CEO, and chief academic officer.

Chang was selected following a national search and will succeed Dr. H. Dirk Sostman, who will retire in February after 20 years of leadership. Chang is the director of the Houston Methodist Dr. Mary and Ron Neal Cancer Center and the Emily Herrmann Presidential Distinguished Chair in Cancer Research. She has been with Houston Methodist for 15 years.

Over the last five years, Chang has served as the institute’s chief clinical science officer and is credited with strengthening cancer clinical trials. Her work has focused on therapy-resistant cancer stem cells and their treatment, particularly relating to breast cancer.

Her work has generated more than $35 million in funding for Houston Methodist from organizations like the National Institutes of Health and the National Cancer Institute, according to the health care system. In 2021, Dr. Mary Neal and her husband Ron Neal, whom the cancer center is now named after, donated $25 million to support her and her team’s research on advanced cancer therapy.

In her new role, Chang will work to expand clinical and translational research and education across Houston Methodist in digital health, robotics and bioengineered therapeutics.

“Dr. Chang’s dedication to Houston Methodist is unparalleled,” Dr. Marc L. Boom, Houston Methodist president and CEO, said in a news release. “She is committed to our mission and to helping our patients, and her clinical expertise, research innovation and health care leadership make her the ideal choice for leading our academic mission into an exciting new chapter.”

Chang is a member of the American Association of Cancer Research (AACR) Stand Up to Cancer Scientific Advisory Council. She earned her medical degree from Cambridge University in England and completed fellowship training in medical oncology at the Royal Marsden Hospital/Institute for Cancer Research. She earned her research doctorate from the University of London.

She is also a professor at Weill Cornell Medical School, which is affiliated with the Houston Methodist Academic Institute.

Texas A&M awarded $1.3M federal grant to develop clean energy tech from electronic waste

seeing green

Texas A&M University in College Station has received a nearly $1.3 million federal grant for development of clean energy technology.

The university will use the $1,280,553 grant from the U.S. Department of Energy to develop a cost-effective, sustainable method for extracting rare earth elements from electronic waste.

Rare earth elements (REEs) are a set of 17 metallic elements.

“REEs are essential components of more than 200 products, especially high-tech consumer products, such as cellular telephones, computer hard drives, electric and hybrid vehicles, and flat-screen monitors and televisions,” according to the Eos news website.

REEs also are found in defense equipment and technology such as electronic displays, guidance systems, lasers, and radar and sonar systems, says Eos.

The grant awarded to Texas A&M was among $17 million in DOE grants given to 14 projects that seek to accelerate innovation in the critical materials sector. The federal Energy Act of 2020 defines a critical material — such as aluminum, cobalt, copper, lithium, magnesium, nickel, and platinum — as a substance that faces a high risk of supply chain disruption and “serves an essential function” in the energy sector.

“DOE is helping reduce the nation’s dependence on foreign supply chains through innovative solutions that will tap domestic sources of the critical materials needed for next-generation technologies,” says U.S. Energy Secretary Jennifer Granholm. “These investments — part of our industrial strategy — will keep America’s growing manufacturing industry competitive while delivering economic benefits to communities nationwide.”

------

This article originally appeared on EnergyCapital.

Biosciences startup becomes Texas' first decacorn after latest funding

A Dallas-based biosciences startup whose backers include millionaire investors from Austin and Dallas has reached decacorn status — a valuation of at least $10 billion — after hauling in a series C funding round of $200 million, the company announced this month. Colossal Biosciences is reportedly the first Texas startup to rise to the decacorn level.

Colossal, which specializes in genetic engineering technology designed to bring back or protect various species, received the $200 million from TWG Global, an investment conglomerate led by billionaire investors Mark Walter and Thomas Tull. Walter is part owner of Major League Baseball’s Los Angeles Dodgers, and Tull is part owner of the NFL’s Pittsburgh Steelers.

Among the projects Colossal is tackling is the resurrection of three extinct animals — the dodo bird, Tasmanian tiger and woolly mammoth — through the use of DNA and genomics.

The latest round of funding values Colossal at $10.2 billion. Since launching in 2021, the startup has raised $435 million in venture capital.

In addition to Walter and Tull, Colossal’s investors include prominent video game developer Richard Garriott of Austin and private equity veteran Victor Vescov of Dallas. The two millionaires are known for their exploits as undersea explorers and tourist astronauts.

Aside from Colossal’s ties to Dallas and Austin, the startup has a Houston connection.

The company teamed up with Baylor College of Medicine researcher Paul Ling to develop a vaccine for elephant endotheliotropic herpesvirus (EEHV), the deadliest disease among young elephants. In partnership with the Houston Zoo, Ling’s lab at the Baylor College of Medicine has set up a research program that focuses on diagnosing and treating EEHV, and on coming up with a vaccine to protect elephants against the disease. Ling and the BCMe are members of the North American EEHV Advisory Group.

Colossal operates research labs Dallas, Boston and Melbourne, Australia.

“Colossal is the leading company working at the intersection of AI, computational biology, and genetic engineering for both de-extinction and species preservation,” Walter, CEO of TWG Globa, said in a news release. “Colossal has assembled a world-class team that has already driven, in a short period of time, significant technology innovations and impact in advancing conservation, which is a core value of TWG Global.”

Well-known genetics researcher George Church, co-founder of Colossal, calls the startup “a revolutionary genetics company making science fiction into science fact.”

“We are creating the technology to build de-extinction science and scale conservation biology,” he added, “particularly for endangered and at-risk species.”