Intuitive Machines will acquire Kinetx, which marks its entry into the precision navigation and flight dynamics segment of deep space operations. Photo via Getty Images.

Houston-based space technology, infrastructure and services company Intuitive Machines has agreed to buy Tempe, Arizona-based aerospace company KinetX for an undisclosed amount.

The deal is expected to close by the end of this year, according to a release from the company.

KinetX specializes in deep space navigation, systems engineering, ground software and constellation mission design. It’s the only company certified by NASA for deep space navigation. KinetX’s navigation software has supported both of Intuitive Machines’ lunar missions.

Intuitive Machines says the acquisition marks its entry into the precision navigation and flight dynamics segment of deep space operations.

“We know our objective, becoming an indispensable infrastructure services layer for space exploration, and achieving it requires intelligent systems and exceptional talent,” Intuitive Machines CEO Steve Altemus said in the release. “Bringing KinetX in-house gives us both: flight-proven deep space navigation expertise and the proprietary software behind some of the most ambitious missions in the solar system.”

KinetX has supported deep space missions for more than 30 years, CEO Christopher Bryan said.

“Joining Intuitive Machines gives our team a broader operational canvas and shared commitment to precision, autonomy, and engineering excellence,” Bryan said in the release. “We’re excited to help shape the next generation of space infrastructure with a partner that understands the demands of real flight, and values the people and tools required to meet them.”

Intuitive Machines has been making headlines in recent weeks. The company announced July 30 that it had secured a $9.8 million Phase Two government contract for its orbital transfer vehicle. Also last month, the City of Houston agreed to add three acres of commercial space for Intuitive Machines at the Houston Spaceport at Ellington Airport. Read more here.

The NASA-backed Translational Research Institute for Space Health is innovating the future of life in space. Libby Neder Photography

Houston-based organization tasked by NASA to take risks and innovate solutions in space health

HOUSTON INNOVATORS PODCAST EPISODE 14

For Dorit Donoviel, innovation means risk — and there's not a lot that's riskier than traveling to and living in outer space. As director of Houston-based TRISH — the Translational Research Institute for Space Health — Donoviel is tasked by NASA to take some risks in order to innovate.

"Everyone tosses the word 'innovation' around, but that means, to us, taking risks in science. Health care, in particular, is very risk averse, but the space industry is taking risks every single day when they put people in a rocket and hurl them into space," Donoviel says on this week's episode of the Houston Innovators Podcast. "If we're going to mars, for example, we are going to put people at risk.

"For us to take risks in order to reduce risk is a really amazing opportunity."

TRISH works hand in hand with NASA's Human Research Program to identify the program's biggest concerns, and then tap into professors, researchers, and scientists from Baylor College of Medicine, California Institute of Technology, the Massachusetts Institute for Technology, and other partners in order to innovate solutions.

Some of the issues TRISH is working to provide solutions for range from protecting from radiation exposure on the moon and mars to personal health care — astronauts have to be a doctor to themselves when they are on the space station.

"That's a totally new model for health care, so we have to solve all those problems and invest in them," Donoviel says.

In a lot of ways, TRISH connects the dots of modern space research, explains Donoviel. The organization taps into its researcher network, as well as into startups and companies with innovative technologies, in order to deliver the best space innovations to NASA.

Donoviel goes into more details on how TRISH interacts with entrepreneurs as well as what new technologies the organization has seen success with in the episode. Stream the podcast below, and subscribe wherever you get your podcasts.


Australia-based Moonshot has opened a Houston chapter. Miriam Espacio / Pexels

Global space startup and innovation connector opens Houston branch

Space city win

It's almost an understatement to say that Houston's space economy is taking off like a rocket.

On May 28, four companies in the Houston area — Axiom Space Inc., Boeing Co., KBRwyle, and NanoRacks LLC — were tasked with helping chart NASA's course in the space economy, whose global value is projected to climb as high as $3 trillion by 2040. Three days later, Houston-based Intuitive Machines LLC was awarded a $77.2 million contract to send as many as five NASA payloads to the moon.

And a month later, on June 26, officials broke ground on the first phase of Houston Spaceport, a 450-acre project at Ellington Airport that will serve as a sort of control center for aerospace research and manufacturing, and commercial space operations.

Then, on July 19 — a day ahead of the 50th anniversary of Apollo 11 man-on-the-moon mission — Australia-based startup Moonshot Space Co. launched a chapter in Houston to help foster the region's multibillion-dollar space economy. Through its programming, which will kick off this fall, Moonshot seeks to corral entrepreneurs, students, job seekers, business executives, investors, university researchers, government officials, and others in an effort to nurture and promote Houston's space economy.

Troy McCann, founder and CEO of Moonshot, believes Houston — home to NASA's Johnson Space Center — can emerge as the epicenter of the global space economy.

"You'd have to have been living under a rock for the past 50 years not to be aware of Houston's stellar aerospace ecosystem," McCann says. "It's got both the historical credibility and a suite of … successful commercial space ventures based there."

"We want to help fine-tune Houston's space economy by providing a proven framework to elevate people and their ideas into successful teams and scalable businesses," McCann adds, "and to create the industries of the future and solve humanity's greatest challenges."

The Houston chapter, a nonprofit venture, is Moonshot's first in the U.S. and second outside Australia. Nathan Johnson, a Houston attorney who specializes in space law and business development, has been tapped to direct it.

"We're in the process of starting chapters across the globe because we believe that the next Nikola Tesla or Marie Curie is out there somewhere, but they don't have access to the resources they need to change the world for the better," McCann says. "Today, the average person has the ability to start a commercial space program for less than the cost of a fast-food franchise."

Johnson says Houston's prominence as NASA's hub for human spaceflight, its status as the "Energy Capital of the World," and the presence of the Texas Medical Center combine to make Space City a potent force in the space economy.

"My hope is to see Houston continue to lead in space and become a hub for the next wave of space commercialization," Johnson says. "We have a wide breadth of industries, and I would like to see that terrestrial expertise extend to new market applications in space."

If Houston does evolve into a nucleus for the global space economy, it stands to reap sky-high financial rewards. Various analysts forecast the global space economy will soar to between $1 trillion and $3 trillion by 2040, up from an estimated $415 billion in 2018.

"Space is and will be a global endeavor, depending on a strong economy, smart industries, and a talented workforce," Johnson says. "Houston already has all of those things, continues to actively develop them at all levels of the community, and does so in a way that reflects the world's population."

The new exhibit is the first of its kind and will be open later this summer. Courtesy of Space Center Houston

New SpaceX exhibit expected to land at Space Center Houston this summer

Mission control

Space Center Houston has a new exhibit launching this summer. The nonprofit will have a Falcon 9 first stage booster on display starting later this summer.

The booster was used in two missions, which marked the first time a refurbished booster was used on a NASA mission. It first launched in June 2017 with a commercial resupply mission (CRS-11) and returned successfully to Earth. Then, the booster was flown a second time in December 2017 (CRS-13).

"We're excited to welcome Falcon 9 to our growing center," says William T. Harris, president and CEO of Space Center Houston, in a release. "It's part of an historic achievement designing a reusable rocket to further space exploration and America's commercial space industry. The new exhibit is one way we're interpreting the future of human spaceflight. We are deeply grateful to SpaceX for their contribution."

The booster, B1035, is one of only two of its kind on display, and the exhibit is the first commercial space exhibit for the museum. The booster will be displayed near Independence Plaza and will be presented on its side and raised 14 feet so that visitors can walk underneath it and learn about reusable technology in space and how it's making space travel more accessible.

NASA's Space Shuttle Program was the first to bring reusable spacecraft into existence, which lead to more accessibility and the creation of important advances in space technology, such as the International Space Station. SpaceX is continuing this technology within the commercial realm of space travel.

The exhibit was announced at Space Center Houston's Galaxy Gala presented by Chevron on Thursday, May 9. The event was led by co-chairs Peggy Kostial with Shanell and Walker Moody. Guests at the event enjoyed special presentations and sneak peeks, while raising nearly $700,000 for the Manned Space Flight Education Foundation. The proceeds will support the nonprofit's extensive education programs that benefits serving youth and educators from around the world.

"We strive to inspire youth to be part of the NASA mission," says Harris in the release. "From launching a rocket to designing a future spacecraft, we want everyone to have exceptional learning opportunities and to think outside the box like a scientist, engineer or astronaut. Thank you to our generous sponsors and donors whose contributions help us provide authentic learning experiences to people of all ages."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”