In the last few years, the National Oceanic and Atmospheric Administration has devoted $10 million to $15 million annually to small businesses in the form of SBIR grants. Photo via Getty Images

Inside the Department of Commerce is a relatively small federal agency, compared to the others, call the National Oceanic and Atmospheric Administration. They too have a small business innovation research (or SBIR) program in which technology startups can have access to funds to de-risk their innovation.

Here’s what you need to know about this non-dilutive funding opportunity:

Overview of NOAA’s SBIR Program

Although the SBIR program has been around for over forty years, NOAA entered the scene in 2010 when their research and development budget reached over $100 million. Per the federal statue, they joined a host of federal agencies that were to devote 3.2 percent of that budget to small businesses.

In the last few years, NOAA has devoted $10 to $15 million annually to small businesses in the form of SBIR grants. These Phase I awards have reached $175,000 in funding for a six-month feasibility study. Follow-on Phase II awards can reach up to $650,000 for 24 months of R&D. Each year’s solicitation is generally announced near the end of the calendar year with deadlines ranging from December to March. While not exactly cyclical, anticipating these deadlines allows a company to set aside enough to prepare a proper application.

What is NOAA Looking For?

According to the NOAA’s website, “NOAA is an agency that enriches life through science. Our reach goes from the surface of the sun to the depths of the ocean floor as we work to keep the public informed of the changing environment around them.“ Their SBIR research topics have stayed consistent since 2011 with minor general topic changes. These six topics have been the same for the last two funding cycles:

  • 9.1 Extreme Events and Cascading Hazards
  • 9.2 Coastal Resilience
  • 9.3 The Changing Ocean
  • 9.4 Water Availability, Quality, and Risk
  • 9.5 Effects of Space Weather
  • 9.6 Monitoring and Modeling for Climate Change Mitigation

When analyzing past winners, which you can find online, a clear emphasis is placed on developing advanced tools for data collection, analysis, and prediction, particularly in the areas of weather forecasting, oceanic observation, and ecosystem health. Many projects involve AI and machine learning for processing large datasets to improve decision-making in disaster response, fishery management, and habitat conservation.

The recurring theme of scalability, real-time data applications, and cost-effective, sustainable solutions shows NOAA's interest in technologies that not only address immediate environmental challenges but also have broader implications for global climate and ecosystem management. Additionally, NOAA seems to value partnerships that leverage cross-disciplinary expertise, integrating cutting-edge science with practical applications.

Their grading criteria also give you some early insight into what they are interested in receiving:

  1. The scientific merit and technical approach of the proposed research (40 points)
  2. The level of innovation the proposed effort offers to the research topic area (20 points)
  3. Consideration of an application’s commercial and societal impacts and potential applications (20 points)
  4. Qualifications of the proposed principal/key investigators, supporting staff, and consultants and availability of instrumentation and physical facilities necessary to complete the proposed work (20 points)

How to Apply

Because of the previous trends, we anticipate NOAA will publish a similar list of research topics along the same lines as the last few years within the next several months. With a deadline being between December and March, it’s in your best interest to begin preparing your application now. Here are the first three early steps I’d recommend for you to get a headstart:

  • Check your eligibility
    • You must be a for-profit organization.
    • You must have fewer than 500 employees
    • You must be primarily owned by a U.S. citizen or permanent resident
    • You must not be majority owned by venture capital or private equity
  • Complete your registrations
    • System for Award Management (SAM) — registration can take over a month and must be renewed on an annual basis.
    • Small Business Association SBA — registration can take up to 90 days.
    • Grants.gov — registration typically takes between three to 10 business days.
  • Start writing your first sections
    • Develop your abstract and specific aims. If possible, schedule a meeting with a program manager from NOAA to review and provide early feedback on these early sections.

Don’t Forget About Asking for Help

Practice regular and open communication with NOAA and their SBIR program managers. Ask questions early and often to make sure you have the best chance of receiving positive feedback when you finally submit your application. I’d encourage you to find previous NOAA SBIR reviewers to do a preliminary review before your submission. Since these solicitations only come around once a year, it’s worth the time and effort to polish your application to the highest degree. If you’re worried about the time commitment of writing a 15 page application for funding, find a local grant writer (or grant writing firm) to help with application and submission process.

Finally, good luck to all you NOAA applications as you innovate in such a way to make the world a better place.

------

Robert Wegner is the director of business development for Baginski Wegner and Company (BW&CO).

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

MD Anderson makes AI partnership to advance precision oncology

AI Oncology

Few experts will disagree that data-driven medicine is one of the most certain ways forward for our health. However, actually adopting it comes at a steep curve. But what if using the technology were democratized?

This is the question that SOPHiA GENETICS has been seeking to answer since 2011 with its universal AI platform, SOPHiA DDM. The cloud-native system analyzes and interprets complex health care data across technologies and institutions, allowing hospitals and clinicians to gain clinically actionable insights faster and at scale.

The University of Texas MD Anderson Cancer Center has just announced its official collaboration with SOPHiA GENETICS to accelerate breakthroughs in precision oncology. Together, they are developing a novel sequencing oncology test, as well as creating several programs targeted at the research and development of additional technology.

That technology will allow the hospital to develop new ways to chart the growth and changes of tumors in real time, pick the best clinical trials and medications for patients and make genomic testing more reliable. Shashikant Kulkarni, deputy division head for Molecular Pathology, and Dr. J. Bryan, assistant professor, will lead the collaboration on MD Anderson’s end.

“Cancer research has evolved rapidly, and we have more health data available than ever before. Our collaboration with SOPHiA GENETICS reflects how our lab is evolving and integrating advanced analytics and AI to better interpret complex molecular information,” Dr. Donna Hansel, division head of Pathology and Laboratory Medicine at MD Anderson, said in a press release. “This collaboration will expand our ability to translate high-dimensional data into insights that can meaningfully advance research and precision oncology.”

SOPHiA GENETICS is based in Switzerland and France, and has its U.S. offices in Boston.

“This collaboration with MD Anderson amplifies our shared ambition to push the boundaries of what is possible in cancer research,” Dr. Philippe Menu, chief product officer and chief medical officer at SOPHiA GENETICS, added in the release. “With SOPHiA DDM as a unifying analytical layer, we are enabling new discoveries, accelerating breakthroughs in precision oncology and, most importantly, enabling patients around the globe to benefit from these innovations by bringing leading technologies to all geographies quickly and at scale.”

Houston company plans lunar mission to test clean energy resource

lunar power

Houston-based natural resource and lunar development company Black Moon Energy Corporation (BMEC) announced that it is planning a robotic mission to the surface of the moon within the next five years.

The company has engaged NASA’s Jet Propulsion Laboratory (JPL) and Caltech to carry out the mission’s robotic systems, scientific instrumentation, data acquisition and mission operations. Black Moon will lead mission management, resource-assessment strategy and large-scale operations planning.

The goal of the year-long expedition will be to gather data and perform operations to determine the feasibility of a lunar Helium-3 supply chain. Helium-3 is abundant on the surface of the moon, but extremely rare on Earth. BMEC believes it could be a solution to the world's accelerating energy challenges.

Helium-3 fusion releases 4 million times more energy than the combustion of fossil fuels and four times more energy than traditional nuclear fission in a “clean” manner with no primary radioactive products or environmental issues, according to BMEC. Additionally, the company estimates that there is enough lunar Helium-3 to power humanity for thousands of years.

"By combining Black Moon's expertise in resource development with JPL and Caltech's renowned scientific and engineering capabilities, we are building the knowledge base required to power a new era of clean, abundant, and affordable energy for the entire planet," David Warden, CEO of BMEC, said in a news release.

The company says that information gathered from the planned lunar mission will support potential applications in fusion power generation, national security systems, quantum computing, radiation detection, medical imaging and cryogenic technologies.

Black Moon Energy was founded in 2022 by David Warden, Leroy Chiao, Peter Jones and Dan Warden. Chiao served as a NASA astronaut for 15 years. The other founders have held positions at Rice University, Schlumberger, BP and other major energy space organizations.

Houston co. makes breakthrough in clean carbon fiber manufacturing

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.