The City of Houston is aiming to have Arco del Tiempo installed in 2024. Photo courtesy of The City of Houston

The City of Houston has unveiled the first look at the latest permanent public artwork that will be installed in the Second Ward in 2024. The sculpture is the first-ever environmentally sustainable art piece that will generate electricity for the nearby City-owned Latino multicultural performing arts theater.

Arco del Tiempo (Arch of Time) is a 100-foot tall arch designed by Berlin-based artist and architect Riccardo Mariano. Several years have been put into the making of this project, dating as far back as 2019. Mariano had entered the idea into a Land Art Generator Initiative (LAGI) design competition in the Houston sister-city of Abu Dhabi. From there, it was chosen to be developed full-scale and installed at Guadalupe Plaza Park.

According to a press release, the sculpture can measure time and cast beams of sunlight onto the ground, creating a connection between "the celestial and the terrestrial" through the geometry of the design.

The light beams are different based on the four seasons and the time of day, constantly shifting and responding to the latitude and longitude of the city from space. Mariano said that his sculpture is a "practical example" of how physical art can interact with the abstract, such as the Earth's movement around the sun.

"The apparent movement of the sun in the sky activates the space with light and colors and engages viewers who participate in the creation of the work by their presence," said Mariano. "Arco del Tiempo merges renewable energy generation with public space and into the everyday life of the Second Ward. Inspired by science and powered by renewable energy, the artwork is a bridge between art and technology and encourages educational purposes while improving public space. At night the space within the arch will be used as a stage for outdoor public events.”

"At night the space within the arch will be used as a stage for outdoor public events,” Riccardo Mariano said.Photo courtesy of The City of Houston

Arco del Tiempo will do more than just be an aesthetically pleasing sight for the community. Its meaningful, functional purpose will be to generate about 400,000 kilowatt-hours of electricity per year, and power the Talento Bilingüe de Houston. LAGI founding co-director Elizabeth Monoian said in the release the sculpture will generate over 12 million kilowatt-hours of power throughout its lifetime, which equals the removal of 8,500 metric tons of carbon dioxide from the atmosphere.

"Through the clean energy it produces, Arco del Tiempo will pay back its embodied carbon footprint," Monoian said. "In other words, all the energy that went into its making—from the smelting of the steel to the drilling that puts the final cladding into place—will be offset through the energy it generates. Beyond its break-even point, which we will track and celebrate with the community, the artwork will be a net-positive contributor to a healthy climate and the planet will be better off for its existence.”

In a statement, Houston Mayor Sylvester Turner praised the unique art piece as more than just a sculpture, but as a "monument to a new era of energy."

"The City of Houston has always stood at the vanguard of energy innovation and the Arco del Tiempo artwork stands in that tradition, highlighting Houston’s role as an art city and as global leader in the energy transition," Mayor Turner said. "We are inspired by the vision and creative thinking. Marrying clean energy, the built environment, and truly World Class art is Houston.”

------

This article originally ran on CultureMap.

The 130,000-square-foot Resilience Manufacturing Hub is coming to the Second Ward. Photo houston.org

$32M resilience-focused hub to rise in Houston's East End

coming soon

A first-of-its-kind manufacturing hub designed to “future proof” residential, commercial, industrial, and public sector infrastructure is coming to Houston.

The 130,000-square-foot Resilience Manufacturing Hub will house functions such as R&D, manufacturing, and assembly for products aimed at improving the resilience of homes, office buildings, warehouses, and other components of the “built environment.”

“We are looking for any product or technology solution that can reduce the impact from the next generation of disasters … by helping people thrive, not just survive, in their own community,” says Richard Seline, co-founder and managing director of the Houston-based Resilience Innovation Hub. The innovation hub is a partner in the manufacturing hub.

Seline says the manufacturing hub, with an estimated price tag of $32 million, will directly employ about 60 people. He expects the facility to either generate or “upskill” about 240 off-site jobs.

The manufacturing hub will be built adjacent to the 300,000-square-foot East End Maker Hub, which is opened in Houston’s Second Ward neighborhood two years ago. Seline says five companies already have expressed interest in being tenants at the manufacturing hub, which is set to open by next summer.

The East End Maker Hub, a public-private endeavor, opened in the summer of 2021. Photo by Natalie Harms/InnovationMap

“We know that the supply chains keep failing over and over again in regard to responding to and rebuilding after disasters. This is a way to address that,” Seline says of the manufacturing hub.

Aside from the innovation hub and East End Maker Hub, partners in the manufacturing venture are the nonprofit Urban Partnerships Community Development Corp. (UPC) and modular construction company VEMAS. UPC is based in Houston, and VEMAS has a Houston office.

“The Resilience Manufacturing Hub is one of four pillars in UPC’s vision for an Invest Houston strategy to grow our economy from within by directly impacting middle-income employment — vital for the 1 million jobs projected as a gap in greater Houston’s long-term competitiveness,” says Patrick Ezzell, president and chairman of UPC and founder of the East End Maker Hub.

The manufacturing hub will work hand in hand with the innovation hub. The innovation hub assesses and addresses risks triggered by climate-produced, manmade, pandemic-related and cybersecurity threats. Hub participants work on innovations aimed at alleviating these risks.

In 2012, the National Academy of Sciences defined resilience as “the ability to prepare and plan for, absorb, recover from, and more successfully adapt to adverse events.” Those events include hurricanes and floods.

The resilience movement got a substantial boost last year thanks to passage of the federal Community Disaster Resilience Zones Act. The law allows for designation of resilience zones in communities that are at high risk of natural disasters and have limited resources. These zones will qualify for federal funding earmarked for resilience efforts.

Harris County scores nearly 98 out of 100 on the National Risk Index, generated by the Federal Emergency Management Agency (FEMA), putting it into the “very high” risk category for natural hazards.

Yet Harris County ekes out a score of 12.73 out of 100 for community resilience, landing it in the “very low” category. This means the county has a poor ability to prepare for natural hazards, adapt to changing conditions, and withstand and recover from disruptions.

Richard Seline is the co-founder and managing director of the Houston-based Resilience Innovation Hub. Photo courtesy

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston engineers develop breakthrough device to advance spinal cord treatment

future of health

A team of Rice University engineers has developed an implantable probe over a hundred times smaller than the width of a hair that aims to help develop better treatments for spinal cord disease and injury.

Detailed in a recent study published in Cell Reports, the probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement, according to a statement from Rice. The research was supported by the National Institutes of Health, Rice, the California-based Salk Institute for Biological Studies, and the philanthropic Mary K. Chapman Foundation based in Oklahoma.

The soft and flexible sensor was used to record neuronal activity in freely moving mice with high resolution for multiple days. Historically, tracking this level of activity has been difficult for researchers because the spinal cord and its neurons move so much during normal activity, according to the team.

“We developed a tiny sensor, spinalNET, that records the electrical activity of spinal neurons as the subject performs normal activity without any restraint,” Yu Wu, a research scientist at Rice and lead author of the study said in a statement. “Being able to extract such knowledge is a first but important step to develop cures for millions of people suffering from spinal cord diseases.”

The team says that before now the spinal cord has been considered a "black box." But the device has already helped the team uncover new findings about the body's rhythmic motor patterns, which drive walking, breathing and chewing.

Lan Luan (from left), Yu Wu, and Chong Xie are working on the breakthrough device. Photo by Jeff Fitlow/Rice University

"Some (spinal neurons) are strongly correlated with leg movement, but surprisingly, a lot of neurons have no obvious correlation with movement,” Wu said in the statement. “This indicates that the spinal circuit controlling rhythmic movement is more complicated than we thought.”

The team said they hope to explore these findings further and aim to use the technology for additional medical purposes.

“In addition to scientific insight, we believe that as the technology evolves, it has great potential as a medical device for people with spinal cord neurological disorders and injury,” Lan Luan, an associate professor of electrical and computer engineering at Rice and a corresponding author on the study, added in the statement.

Rice researchers have developed several implantable, minimally invasive devices to address health and mental health issues.

In the spring, the university announced that the United States Department of Defense had awarded a four-year, $7.8 million grant to the Texas Heart Institute and a Rice team led by co-investigator Yaxin Wang to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation.

That same month, the university shared news that Professor Jacob Robinson had published findings on minimally invasive bioelectronics for treating psychiatric conditions. The 9-millimeter device can deliver precise and programmable stimulation to the brain to help treat depression, obsessive-compulsive disorder and post-traumatic stress disorder.

Houston clean hydrogen startup to pilot tech with O&G co.

stay gold

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

------

This article originally ran on EnergyCapital.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes an e-commerce startup founder, an industrial biologist, and a cellular scientist.

Omair Tariq, co-founder and CEO of Cart.com

Omair Tariq of Cart.com joins the Houston Innovators Podcast to share his confidence in Houston as the right place to scale his unicorn. Photo via Cart.com

Houston-based Cart.com, which operates a multichannel commerce platform, has secured $105 million in debt refinancing from investment manager BlackRock.

The debt refinancing follows a recent $25 million series C extension round, bringing Cart.com’s series C total to $85 million. The scaleup’s valuation now stands at $1.2 billion, making it one of the few $1 billion-plus “unicorns” in the Houston area.

Cart.com was co-founded by CEO Omair Tariq in October 2020. Read more.

Nádia Skorupa Parachin, vice president of industrial biotechnology at Cemvita

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos. Read more.

Han Xiao, associate professor of chemistry at Rice University

The funds were awarded to Han Xiao, a chemist at Rice University.

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories. Xiao will use the five-year grant to advance his work on noncanonical amino acids.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement. Read more.