Two Houston companies will be pitching at SXSW in March hoping to win their categories and take home "Best of Show." Marie Ketring/via sxsw.org

In two months, a couple Houston companies will be packing their bags and headed for Austin, where they will pitch their startups at the 11th annual SXSW Pitch event. SXSW announced the 50 finalists on Wednesday.

A total of six Texas companies — two from Houston and four from Austin — will be presenting to a live audience and panel of judges at the March 9 to 10 competition. There are 10 categories, each with one winner, as well as an overall "Best of Show" winner.

Houston-based Fluidity Technologies will be presenting as its drone controller, FT Aviator, has been named a finalist in the Hyper-Connected Communities category. Fluidity is lead by CEO Scott Parazynski, a former NASA astronaut, pilot, and physician. The FT Aviator has the potential to revolutionize drone technology. The joystick-like controller is based off movement in space, Parazynski says, and is less prone to user error by someone not as well trained in drone operation.

"I've flown aircraft and spacecraft," Parazynski says in an InnovationMap article about the company. "But none allowed for the precision of motion I was looking for. None prevented unintended motion."

The other Houston company selected as a finalist is Zibrio SmartScale, which is in the Health and Wearable category. The company is all about balance. Its product, a smart scale that tracks balance, aims to reduce dangers that come with poor balance — injuries, deaths, and costs from falls. Katharine Forth leads the company as CEO and founder. The company was a member of TMCx's 2015 medical devices cohort.

SXSW's competition this year has expanded to include new categories and has seen an increase in startups.

"We have seen a 42 percent rise in applicants coming out of last year's event, and we couldn't be more thrilled to see such an impressive increase in the value of SXSW Pitch among the tech industry's most innovative startups," says SXSW Pitch Event Producer Chris Valentine in the release. "In addition to the creation of the new AI and blockchain categories, we've also expanded our advisory board to highlight geographic, gender, and racial inclusion – accelerating our desire to represent the world's most innovative and successful leaders in all areas of technology."

It's not just in the finalists that Houston is represented — two advisers are from the Bayou City. Mariam Jacob, of Allergy and Asthma Clinics of Houston, will be a pre-event coach, and Gabriella Rowe, CEO of Station Houston, will be an on-site coach.

These three entrepreneurs have a lot up their sleeves for 2019. Courtesy images

3 Houston innovators to know this week

Who's Who

This week starts in one year and ends in the next, and InnovationMap has three inspiring entrepreneurs to lead you into 2019. All three are behind Houston startups that are planning for big growth in the upcoming year. So, read their stories and get familiar with their names and faces — they aren't going anywhere.

Ben Johnson, founder and CEO of Apartment Butler

Ben Johnson's business idea turned into a growing company making the lives of apartment dwellers easier. Courtesy of Apartment Butler

Ben Johnson has his own master plan. He'd work as an oil and gas banker for a bit, establish himself, get his MBA, and then, when he was in his 40s, would start his own company. He wasn't wrong about his future as an entrepreneur, but he was off by the timeline.

Johnson started Apartment Butler a few years ago when he saw how apartment communities had the potential to provide streamlined access to resident elected services — such as cleaning or pet care. At the same time, apartment communities across the U.S. were looking to beef up their amenities. Now, Apartment Butler is expanding to its third and fourth markets early next year and is looking to provide more services to its users.

Scott Parazynski, CEO of Fluidity Technologies

Scott Parazynski is a accomplished astronaut and surgeon, but he has a new career focus on drone operation. Courtesy of Fluidity

There are Renaissance men and then there's Scott Parazynski. He's has spent 57 days in space, trained as a trauma surgeon, and climbed Mount Everest as a team physician for the Discovery Channel. His latest conquest is designing a drone controller based on movement in space. The device, called the FT Aviator, allows for one-handed piloting of drones and has the potential to affect the way unmanned vehicles are piloted across industries. As the CEO of Fluidity Technologies, he has big plans for what one-handed drone operation can do.

David Grimes, CEO and co-founder of Snap Diligence

David Grimes thought he was creating a useful tool to vet colleagues. Turns out, he made a way for warm connections better than LinkedIn. Courtesy of Snap Diligence

Hell hath no fury like a businessman scorned. When a business partner ended up being a shady miscreant, David Grimes realized there wasn't a digital vetting tool where you can evaluate a potential associate. After thinking on the idea for a while, Grimes found a co-founder and a way to create an algorithm that can take public information and run it against a person. The company he created is called Snap Diligence.

Now, the tool has morphed into something else that's been unexpectedly in demand. Snap Diligence can find business connections through your already-established network of associates. It's this new feature the company is looking to expand in 2019.

Fluidity Technologies' joystick-like device is designed based on movement in space. Courtesy of Fluidity

Houston-based company's device is revolutionizing drone technology across industries

Unmanned with one hand

It's not enough that Scott Parazynski has spent 57 days, 15 hours and 34 minutes in space. Nor is the fact that he's trained as a trauma surgeon. Not even climbing Mount Everest as a team physician for the Discovery Channel could satisfy one of Earth's most talent-blessed residents. Now Parazynski is on course to change multiple industries with his latest invention.

Not surprisingly, the member of the US Astronaut Hall of Fame based his design on movement in space. He wanted to approximate the movement of simultaneously shifting from one place to another, but also changing the body's orientation. In zero gravity, it takes precision and planning, Parazynski says, to do that in the most efficient way possible.

As a member of the Houston Methodist Research Institute, his goal was to create a joystick-like device "that would revolutionize surgical robotics." That is still a target for the technology, but with his own Houston-based company, Fluidity Technologies, Parazynski is first releasing the device as a drone controller known as FT Aviator.

"Mostly because it's an enormously growing marketplace and the barriers are a lot less," he admits.

That's not to say Parazynski is anything less than a world-class expert on the subject of flight.

"I've flown aircraft and spacecraft," says Parazynski. "But none allowed for the precision of motion I was looking for. None prevented unintended motion."

Lifelong passion
He himself has had toy drones for as long as they've been available and purchased his first "serious drones" three or four years ago, around the same time he conceived of FT Aviator.

When he started to research other drone controllers, he realized that most current models aren't too different from relics from the 1930s on display at the Smithsonian.

"There has been zero innovation in flight control," he says.

As opposed to the two-handed controllers that recall 1990s video game systems, FT Aviator only requires the attention of the pilot's dominant hand. This is especially useful to those using drone cameras. Instead of complex machinations that often require multiple launches, the user can simply make adjustments to the camera with his or her other hand.

"It does this incredibly intuitive motion with a drone or computer game or virtual augmented reality," Parazynski says, listing other potential uses for the technology.

It's FT Aviator's natural movement that will one day make Fluidity's core technology a groundbreaker in surgical robotics. Since the da Vinci surgical robot's 2000 FDA approval, the machine has created controversy. In the hands of a well-trained surgeon, it substantially reduces healing time. But there is no approval process for doctors to use it, so disasters in the hands of untrained practitioners have made the news.

By using the simpler mechanism of Parazynski's technology, the learning curve for robotic surgery is far less steep.

"What we want to do is make it so someone with less training can enjoy the same outcomes," Parazynski explains.

Cross-industry innovation
Ideally, one day a doctor in Houston will be able to operate remotely on a patient across the globe. Thanks to the device's tactile feedback, it's a realistic goal.

But Parazynski foresees "dozens of applications" for his invention, which will begin shipping in February. Sandia National Laboratories in New Mexico has already engaged Fluidity, just one on a list of about 50 businesses and government institutions interested to work with the company when it comes onto the marketplace.

"But any good startup will tell you it's about focus," the entrepreneur admits.

That means that for now, he and his team have his eye specifically on controlling drones. Within two weeks of launching a Kickstarter this fall for the business, Fluidity doubled its goal. The FT Aviator has been named a 2019 Innovation Award Honoree at the 2019 Consumer Electronics Show. But Parazynski says he owes much of his success to Houston, his home of a quarter century.

Fluidity is based out of a WeWork coworking space.

"I think it's a really exciting place to have a tech startup" Parazynski says. "It's not yet to the scale of Silicon Valley or even Austin but certainly the innovation that's taking place here warrants a major tech hub."

And thanks to Parazynski's work, that day may be coming sooner rather than later.

Drone on

Courtesy of Fluidity

From surgeries to flying drones, Fluidity's technology will affect several industries.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

TMC, Memorial Hermann launch partnership to spur new patient care technologies

medtech partnership

Texas Medical Center and Memorial Hermann Health System have launched a new collaboration for developing patient care technology.

Through the partnership, Memorial Hermann employees and physicians will now be able to participate in the TMC Center for Device Innovation (CDI), which will assist them in translating product innovation ideas into working prototypes. The first group of entrepreneurs will pitch their innovations in early 2026, according to a release from TMC.

“Memorial Hermann is excited to launch this new partnership with the TMC CDI,” Ini Ekiko Thomas, vice president of information technology at Memorial Hermann, said in the news release. “As we continue to grow (a) culture of innovation, we look forward to supporting our employees, affiliated physicians and providers in new ways.”

Mentors from Memorial Hermann, TMC Innovation and industry experts with specialties in medicine, regulatory strategy, reimbursement planning and investor readiness will assist with the program. The innovators will also gain access to support systems like product innovation and translation strategy, get dedicated engineering and machinist resources and personal workbench space at the CDI.

“The prototyping facilities and opportunities at TMC are world-class and globally recognized, attracting innovators from around the world to advance their technologies,” Tom Luby, chief innovation officer at TMC Innovation Factor, said in the release.

Memorial Hermann says the partnership will support its innovation hub’s “pilot and scale approach” and hopes that it will extend the hub’s impact in “supporting researchers, clinicians and staff in developing patentable, commercially viable products.”

“We are excited to expand our partnership with Memorial Hermann and open the doors of our Center for Device Innovation to their employees and physicians—already among the best in medical care,” Luby added in the release. “We look forward to seeing what they accomplish next, utilizing our labs and gaining insights from top leaders across our campus.”

Google to invest $40 billion in AI data centers in Texas

Google is investing a huge chunk of money in Texas: According to a release, the company will invest $40 billion on cloud and artificial intelligence (AI) infrastructure, with the development of new data centers in Armstrong and Haskell counties.

The company announced its intentions at a meeting on November 14 attended by federal, state, and local leaders including Gov. Greg Abbott who called it "a Texas-sized investment."

Google will open two new data center campuses in Haskell County and a data center campus in Armstrong County.

Additionally, the first building at the company’s Red Oak campus in Ellis County is now operational. Google is continuing to invest in its existing Midlothian campus and Dallas cloud region, which are part of the company’s global network of 42 cloud regions that deliver high-performance, low-latency services that businesses and organizations use to build and scale their own AI-powered solutions.

Energy demands

Google is committed to responsibly growing its infrastructure by bringing new energy resources onto the grid, paying for costs associated with its operations, and supporting community energy efficiency initiatives.

One of the new Haskell data centers will be co-located with — or built directly alongside — a new solar and battery energy storage plant, creating the first industrial park to be developed through Google’s partnership with Intersect and TPG Rise Climate announced last year.

Google has contracted to add more than 6,200 megawatts (MW) of net new energy generation and capacity to the Texas electricity grid through power purchase agreements (PPAs) with energy developers such as AES Corporation, Enel North America, Intersect, Clearway, ENGIE, SB Energy, Ørsted, and X-Elio.

Water demands

Google’s three new facilities in Armstrong and Haskell counties will use air-cooling technology, limiting water use to site operations like kitchens. The company is also contributing $2.6 million to help Texas Water Trade create and enhance up to 1,000 acres of wetlands along the Trinity-San Jacinto Estuary. Google is also sponsoring a regenerative agriculture program with Indigo Ag in the Dallas-Fort Worth area and an irrigation efficiency project with N-Drip in the Texas High Plains.

In addition to the data centers, Google is committing $7 million in grants to support AI-related initiatives in healthcare, energy, and education across the state. This includes helping CareMessage enhance rural healthcare access; enabling the University of Texas at Austin and Texas Tech University to address energy challenges that will arise with AI, and expanding AI training for Texas educators and students through support to Houston City College.

---

This article originally appeared on CultureMap.com.

TMCi names 11 global startups to latest HealthTech Accelerator cohort

new class

Texas Medical Center Innovation has named 11 medtech startups from around the world to its latest HealthTech Accelerator cohort.

Members of the accelerator's 19th cohort will participate in the six-month program, which kicked off this month. They range from startups developing on-the-go pelvic floor monitoring to 3D-printed craniofacial and orthopedic implants. Each previously participated in TMCi's bootcamp before being selected to join the accelerator. Through the HealthTech Accelerator, founders will work closely with TMC specialists, researchers, top-tier hospital experts and seasoned advisors to help grow their companies and hone their clinical trials, intellectual property, fundraising and more.

“This cohort of startups is tackling some of today’s most pressing clinical challenges, from surgery and respiratory care to diagnostics and women’s health," Tom Luby, chief innovation officer at Texas Medical Center, said in a news release. "At TMC, we bring together the minds behind innovation—entrepreneurs, technology leaders, and strategic partners—to help emerging companies validate, scale, and deliver solutions that make a real difference for patients here and around the world. We look forward to seeing their progress and global impact through the HealthTech Accelerator and the support of our broader ecosystem.”

The 2025 HealthTech Accelerator cohort includes:

  • Houston-based Respiree, which has created an all-in-one cardiopulmonary platform with wearable sensors for respiratory monitoring that uses AI to track breathing patterns and detect early signs of distress
  • College Station-based SageSpectra, which designs an innovative patch system for real-time, remote monitoring of temperature and StO2 for assessing vascular occlusion, infection, and other surgical flap complications
  • Austin-based Dynamic Light, which has developed a non-invasive imaging technology that enables surgeons to visualize blood flow in real-time without the need for traditional dyes
  • Bangkok, Thailand-based OsseoLabs, which develops AI-assisted, 3D-printed patient-specific implants for craniofacial and orthopedic surgeries
  • Sydney, Australia-based Roam Technologies, which has developed a portable oxygen therapy system (JUNO) that provides real-time oxygen delivery optimization for patients with chronic conditions
  • OptiLung, which develops 3D-printed extracorporeal blood oxygenation devices designed to optimize blood flow and reduce complications
  • Bengaluru, India-based Dozee, which has created a smart remote patient monitor platform that uses under-the-mattress bed sensors to capture vital signs through continuous monitoring
  • Montclair, New Jersey-based Endomedix, which has developed a biosurgical fast-acting absorbable hemostat designed to eliminate the risk of paralysis and reoperation due to device swelling
  • Williston, Vermont-based Xander Medical, which has designed a biomechanical innovation that addresses the complications and cost burdens associated with the current methods of removing stripped and broken surgical screws
  • Salt Lake City, Utah-based Freyya, which has developed an on-the-go pelvic floor monitoring and feedback device for people with pelvic floor dysfunction
  • The Netherlands-based Scinvivo, which has developed optical imaging catheters for bladder cancer diagnostics