Two Houston companies will be pitching at SXSW in March hoping to win their categories and take home "Best of Show." Marie Ketring/via sxsw.org

In two months, a couple Houston companies will be packing their bags and headed for Austin, where they will pitch their startups at the 11th annual SXSW Pitch event. SXSW announced the 50 finalists on Wednesday.

A total of six Texas companies — two from Houston and four from Austin — will be presenting to a live audience and panel of judges at the March 9 to 10 competition. There are 10 categories, each with one winner, as well as an overall "Best of Show" winner.

Houston-based Fluidity Technologies will be presenting as its drone controller, FT Aviator, has been named a finalist in the Hyper-Connected Communities category. Fluidity is lead by CEO Scott Parazynski, a former NASA astronaut, pilot, and physician. The FT Aviator has the potential to revolutionize drone technology. The joystick-like controller is based off movement in space, Parazynski says, and is less prone to user error by someone not as well trained in drone operation.

"I've flown aircraft and spacecraft," Parazynski says in an InnovationMap article about the company. "But none allowed for the precision of motion I was looking for. None prevented unintended motion."

The other Houston company selected as a finalist is Zibrio SmartScale, which is in the Health and Wearable category. The company is all about balance. Its product, a smart scale that tracks balance, aims to reduce dangers that come with poor balance — injuries, deaths, and costs from falls. Katharine Forth leads the company as CEO and founder. The company was a member of TMCx's 2015 medical devices cohort.

SXSW's competition this year has expanded to include new categories and has seen an increase in startups.

"We have seen a 42 percent rise in applicants coming out of last year's event, and we couldn't be more thrilled to see such an impressive increase in the value of SXSW Pitch among the tech industry's most innovative startups," says SXSW Pitch Event Producer Chris Valentine in the release. "In addition to the creation of the new AI and blockchain categories, we've also expanded our advisory board to highlight geographic, gender, and racial inclusion – accelerating our desire to represent the world's most innovative and successful leaders in all areas of technology."

It's not just in the finalists that Houston is represented — two advisers are from the Bayou City. Mariam Jacob, of Allergy and Asthma Clinics of Houston, will be a pre-event coach, and Gabriella Rowe, CEO of Station Houston, will be an on-site coach.

These three entrepreneurs have a lot up their sleeves for 2019. Courtesy images

3 Houston innovators to know this week

Who's Who

This week starts in one year and ends in the next, and InnovationMap has three inspiring entrepreneurs to lead you into 2019. All three are behind Houston startups that are planning for big growth in the upcoming year. So, read their stories and get familiar with their names and faces — they aren't going anywhere.

Ben Johnson, founder and CEO of Apartment Butler

Ben Johnson's business idea turned into a growing company making the lives of apartment dwellers easier. Courtesy of Apartment Butler

Ben Johnson has his own master plan. He'd work as an oil and gas banker for a bit, establish himself, get his MBA, and then, when he was in his 40s, would start his own company. He wasn't wrong about his future as an entrepreneur, but he was off by the timeline.

Johnson started Apartment Butler a few years ago when he saw how apartment communities had the potential to provide streamlined access to resident elected services — such as cleaning or pet care. At the same time, apartment communities across the U.S. were looking to beef up their amenities. Now, Apartment Butler is expanding to its third and fourth markets early next year and is looking to provide more services to its users.

Scott Parazynski, CEO of Fluidity Technologies

Scott Parazynski is a accomplished astronaut and surgeon, but he has a new career focus on drone operation. Courtesy of Fluidity

There are Renaissance men and then there's Scott Parazynski. He's has spent 57 days in space, trained as a trauma surgeon, and climbed Mount Everest as a team physician for the Discovery Channel. His latest conquest is designing a drone controller based on movement in space. The device, called the FT Aviator, allows for one-handed piloting of drones and has the potential to affect the way unmanned vehicles are piloted across industries. As the CEO of Fluidity Technologies, he has big plans for what one-handed drone operation can do.

David Grimes, CEO and co-founder of Snap Diligence

David Grimes thought he was creating a useful tool to vet colleagues. Turns out, he made a way for warm connections better than LinkedIn. Courtesy of Snap Diligence

Hell hath no fury like a businessman scorned. When a business partner ended up being a shady miscreant, David Grimes realized there wasn't a digital vetting tool where you can evaluate a potential associate. After thinking on the idea for a while, Grimes found a co-founder and a way to create an algorithm that can take public information and run it against a person. The company he created is called Snap Diligence.

Now, the tool has morphed into something else that's been unexpectedly in demand. Snap Diligence can find business connections through your already-established network of associates. It's this new feature the company is looking to expand in 2019.

Fluidity Technologies' joystick-like device is designed based on movement in space. Courtesy of Fluidity

Houston-based company's device is revolutionizing drone technology across industries

Unmanned with one hand

It's not enough that Scott Parazynski has spent 57 days, 15 hours and 34 minutes in space. Nor is the fact that he's trained as a trauma surgeon. Not even climbing Mount Everest as a team physician for the Discovery Channel could satisfy one of Earth's most talent-blessed residents. Now Parazynski is on course to change multiple industries with his latest invention.

Not surprisingly, the member of the US Astronaut Hall of Fame based his design on movement in space. He wanted to approximate the movement of simultaneously shifting from one place to another, but also changing the body's orientation. In zero gravity, it takes precision and planning, Parazynski says, to do that in the most efficient way possible.

As a member of the Houston Methodist Research Institute, his goal was to create a joystick-like device "that would revolutionize surgical robotics." That is still a target for the technology, but with his own Houston-based company, Fluidity Technologies, Parazynski is first releasing the device as a drone controller known as FT Aviator.

"Mostly because it's an enormously growing marketplace and the barriers are a lot less," he admits.

That's not to say Parazynski is anything less than a world-class expert on the subject of flight.

"I've flown aircraft and spacecraft," says Parazynski. "But none allowed for the precision of motion I was looking for. None prevented unintended motion."

Lifelong passion
He himself has had toy drones for as long as they've been available and purchased his first "serious drones" three or four years ago, around the same time he conceived of FT Aviator.

When he started to research other drone controllers, he realized that most current models aren't too different from relics from the 1930s on display at the Smithsonian.

"There has been zero innovation in flight control," he says.

As opposed to the two-handed controllers that recall 1990s video game systems, FT Aviator only requires the attention of the pilot's dominant hand. This is especially useful to those using drone cameras. Instead of complex machinations that often require multiple launches, the user can simply make adjustments to the camera with his or her other hand.

"It does this incredibly intuitive motion with a drone or computer game or virtual augmented reality," Parazynski says, listing other potential uses for the technology.

It's FT Aviator's natural movement that will one day make Fluidity's core technology a groundbreaker in surgical robotics. Since the da Vinci surgical robot's 2000 FDA approval, the machine has created controversy. In the hands of a well-trained surgeon, it substantially reduces healing time. But there is no approval process for doctors to use it, so disasters in the hands of untrained practitioners have made the news.

By using the simpler mechanism of Parazynski's technology, the learning curve for robotic surgery is far less steep.

"What we want to do is make it so someone with less training can enjoy the same outcomes," Parazynski explains.

Cross-industry innovation
Ideally, one day a doctor in Houston will be able to operate remotely on a patient across the globe. Thanks to the device's tactile feedback, it's a realistic goal.

But Parazynski foresees "dozens of applications" for his invention, which will begin shipping in February. Sandia National Laboratories in New Mexico has already engaged Fluidity, just one on a list of about 50 businesses and government institutions interested to work with the company when it comes onto the marketplace.

"But any good startup will tell you it's about focus," the entrepreneur admits.

That means that for now, he and his team have his eye specifically on controlling drones. Within two weeks of launching a Kickstarter this fall for the business, Fluidity doubled its goal. The FT Aviator has been named a 2019 Innovation Award Honoree at the 2019 Consumer Electronics Show. But Parazynski says he owes much of his success to Houston, his home of a quarter century.

Fluidity is based out of a WeWork coworking space.

"I think it's a really exciting place to have a tech startup" Parazynski says. "It's not yet to the scale of Silicon Valley or even Austin but certainly the innovation that's taking place here warrants a major tech hub."

And thanks to Parazynski's work, that day may be coming sooner rather than later.

Drone on

Courtesy of Fluidity

From surgeries to flying drones, Fluidity's technology will affect several industries.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH researchers develop breakthrough material to boost efficiency of sodium-ion batteries

eyes on clean energy

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

------

This article originally appeared on EnergyCapital.

Houston hospital names leading cancer scientist as new academic head

new hire

Houston Methodist Academic Institute has named cancer clinician and scientist Dr. Jenny Chang as its new executive vice president, president, CEO, and chief academic officer.

Chang was selected following a national search and will succeed Dr. H. Dirk Sostman, who will retire in February after 20 years of leadership. Chang is the director of the Houston Methodist Dr. Mary and Ron Neal Cancer Center and the Emily Herrmann Presidential Distinguished Chair in Cancer Research. She has been with Houston Methodist for 15 years.

Over the last five years, Chang has served as the institute’s chief clinical science officer and is credited with strengthening cancer clinical trials. Her work has focused on therapy-resistant cancer stem cells and their treatment, particularly relating to breast cancer.

Her work has generated more than $35 million in funding for Houston Methodist from organizations like the National Institutes of Health and the National Cancer Institute, according to the health care system. In 2021, Dr. Mary Neal and her husband Ron Neal, whom the cancer center is now named after, donated $25 million to support her and her team’s research on advanced cancer therapy.

In her new role, Chang will work to expand clinical and translational research and education across Houston Methodist in digital health, robotics and bioengineered therapeutics.

“Dr. Chang’s dedication to Houston Methodist is unparalleled,” Dr. Marc L. Boom, Houston Methodist president and CEO, said in a news release. “She is committed to our mission and to helping our patients, and her clinical expertise, research innovation and health care leadership make her the ideal choice for leading our academic mission into an exciting new chapter.”

Chang is a member of the American Association of Cancer Research (AACR) Stand Up to Cancer Scientific Advisory Council. She earned her medical degree from Cambridge University in England and completed fellowship training in medical oncology at the Royal Marsden Hospital/Institute for Cancer Research. She earned her research doctorate from the University of London.

She is also a professor at Weill Cornell Medical School, which is affiliated with the Houston Methodist Academic Institute.

Texas A&M awarded $1.3M federal grant to develop clean energy tech from electronic waste

seeing green

Texas A&M University in College Station has received a nearly $1.3 million federal grant for development of clean energy technology.

The university will use the $1,280,553 grant from the U.S. Department of Energy to develop a cost-effective, sustainable method for extracting rare earth elements from electronic waste.

Rare earth elements (REEs) are a set of 17 metallic elements.

“REEs are essential components of more than 200 products, especially high-tech consumer products, such as cellular telephones, computer hard drives, electric and hybrid vehicles, and flat-screen monitors and televisions,” according to the Eos news website.

REEs also are found in defense equipment and technology such as electronic displays, guidance systems, lasers, and radar and sonar systems, says Eos.

The grant awarded to Texas A&M was among $17 million in DOE grants given to 14 projects that seek to accelerate innovation in the critical materials sector. The federal Energy Act of 2020 defines a critical material — such as aluminum, cobalt, copper, lithium, magnesium, nickel, and platinum — as a substance that faces a high risk of supply chain disruption and “serves an essential function” in the energy sector.

“DOE is helping reduce the nation’s dependence on foreign supply chains through innovative solutions that will tap domestic sources of the critical materials needed for next-generation technologies,” says U.S. Energy Secretary Jennifer Granholm. “These investments — part of our industrial strategy — will keep America’s growing manufacturing industry competitive while delivering economic benefits to communities nationwide.”

------

This article originally appeared on EnergyCapital.