Who's Who

3 Houston innovators to know this week

These three entrepreneurs have a lot up their sleeves for 2019. Courtesy images

This week starts in one year and ends in the next, and InnovationMap has three inspiring entrepreneurs to lead you into 2019. All three are behind Houston startups that are planning for big growth in the upcoming year. So, read their stories and get familiar with their names and faces — they aren't going anywhere.

Ben Johnson, founder and CEO of Apartment Butler

Ben Johnson's business idea turned into a growing company making the lives of apartment dwellers easier. Courtesy of Apartment Butler

Ben Johnson has his own master plan. He'd work as an oil and gas banker for a bit, establish himself, get his MBA, and then, when he was in his 40s, would start his own company. He wasn't wrong about his future as an entrepreneur, but he was off by the timeline.

Johnson started Apartment Butler a few years ago when he saw how apartment communities had the potential to provide streamlined access to resident elected services — such as cleaning or pet care. At the same time, apartment communities across the U.S. were looking to beef up their amenities. Now, Apartment Butler is expanding to its third and fourth markets early next year and is looking to provide more services to its users.

Scott Parazynski, CEO of Fluidity Technologies

Scott Parazynski is a accomplished astronaut and surgeon, but he has a new career focus on drone operation. Courtesy of Fluidity

There are Renaissance men and then there's Scott Parazynski. He's has spent 57 days in space, trained as a trauma surgeon, and climbed Mount Everest as a team physician for the Discovery Channel. His latest conquest is designing a drone controller based on movement in space. The device, called the FT Aviator, allows for one-handed piloting of drones and has the potential to affect the way unmanned vehicles are piloted across industries. As the CEO of Fluidity Technologies, he has big plans for what one-handed drone operation can do.

David Grimes, CEO and co-founder of Snap Diligence

David Grimes thought he was creating a useful tool to vet colleagues. Turns out, he made a way for warm connections better than LinkedIn. Courtesy of Snap Diligence

Hell hath no fury like a businessman scorned. When a business partner ended up being a shady miscreant, David Grimes realized there wasn't a digital vetting tool where you can evaluate a potential associate. After thinking on the idea for a while, Grimes found a co-founder and a way to create an algorithm that can take public information and run it against a person. The company he created is called Snap Diligence.

Now, the tool has morphed into something else that's been unexpectedly in demand. Snap Diligence can find business connections through your already-established network of associates. It's this new feature the company is looking to expand in 2019.

Trending News

Building Houston

 
 

This UH engineer is hoping to make his mark on cancer detection. Photo via UH.edu

Early stage cancer is hard to detect, mostly because traditional diagnostic imaging cannot detect tumors smaller than a certain size. One Houston innovator is looking to change that.

Wei-Chuan Shih, professor of electrical and computer engineering at the University of Houston's Cullen College of Engineering, recently published his findings in IEEE Sensors journal. According to a news release from UH, the cells around cancer tumors are small — ~30-150nm in diameter — and complex, and the precise detection of these exosome-carried biomarkers with molecular specificity has been elusive, until now.

"This work demonstrates, for the first time, that the strong synergy of arrayed radiative coupling and substrate undercut can enable high-performance biosensing in the visible light spectrum where high-quality, low-cost silicon detectors are readily available for point-of-care application," says Shih in the release. "The result is a remarkable sensitivity improvement, with a refractive index sensitivity increase from 207 nm/RIU to 578 nm/RIU."

Wei-Chuan Shih is a professor of electrical and computer engineering at the University of Houston's Cullen College of Engineering. Photo via UH.edu

What Shih has done is essentially restored the electric field around nanodisks, providing accessibility to an otherwise buried enhanced electric field. Nanodisks are antibody-functionalized artificial nanostructures which help capture exosomes with molecular specificity.

"We report radiatively coupled arrayed gold nanodisks on invisible substrate (AGNIS) as a label-free (no need for fluorescent labels), cost-effective, and high-performance platform for molecularly specific exosome biosensing. The AGNIS substrate has been fabricated by wafer-scale nanosphere lithography without the need for costly lithography," says Shih in the release.

This process speeds up screening of the surface proteins of exosomes for diagnostics and biomarker discovery. Current exosome profiling — which relies primarily on DNA sequencing technology, fluorescent techniques such as flow cytometry, or enzyme-linked immunosorbent assay (ELISA) — is labor-intensive and costly. Shih's goal is to amplify the signal by developing the label-free technique, lowering the cost and making diagnosis easier and equitable.

"By decorating the gold nanodisks surface with different antibodies (e.g., CD9, CD63, and CD81), label-free exosome profiling has shown increased expression of all three surface proteins in cancer-derived exosomes," said Shih. "The sensitivity for detecting exosomes is within 112-600 (exosomes/μL), which would be sufficient in many clinical applications."

Trending News