In the last few years, the National Oceanic and Atmospheric Administration has devoted $10 million to $15 million annually to small businesses in the form of SBIR grants. Photo via Getty Images

Inside the Department of Commerce is a relatively small federal agency, compared to the others, call the National Oceanic and Atmospheric Administration. They too have a small business innovation research (or SBIR) program in which technology startups can have access to funds to de-risk their innovation.

Here’s what you need to know about this non-dilutive funding opportunity:

Overview of NOAA’s SBIR Program

Although the SBIR program has been around for over forty years, NOAA entered the scene in 2010 when their research and development budget reached over $100 million. Per the federal statue, they joined a host of federal agencies that were to devote 3.2 percent of that budget to small businesses.

In the last few years, NOAA has devoted $10 to $15 million annually to small businesses in the form of SBIR grants. These Phase I awards have reached $175,000 in funding for a six-month feasibility study. Follow-on Phase II awards can reach up to $650,000 for 24 months of R&D. Each year’s solicitation is generally announced near the end of the calendar year with deadlines ranging from December to March. While not exactly cyclical, anticipating these deadlines allows a company to set aside enough to prepare a proper application.

What is NOAA Looking For?

According to the NOAA’s website, “NOAA is an agency that enriches life through science. Our reach goes from the surface of the sun to the depths of the ocean floor as we work to keep the public informed of the changing environment around them.“ Their SBIR research topics have stayed consistent since 2011 with minor general topic changes. These six topics have been the same for the last two funding cycles:

  • 9.1 Extreme Events and Cascading Hazards
  • 9.2 Coastal Resilience
  • 9.3 The Changing Ocean
  • 9.4 Water Availability, Quality, and Risk
  • 9.5 Effects of Space Weather
  • 9.6 Monitoring and Modeling for Climate Change Mitigation

When analyzing past winners, which you can find online, a clear emphasis is placed on developing advanced tools for data collection, analysis, and prediction, particularly in the areas of weather forecasting, oceanic observation, and ecosystem health. Many projects involve AI and machine learning for processing large datasets to improve decision-making in disaster response, fishery management, and habitat conservation.

The recurring theme of scalability, real-time data applications, and cost-effective, sustainable solutions shows NOAA's interest in technologies that not only address immediate environmental challenges but also have broader implications for global climate and ecosystem management. Additionally, NOAA seems to value partnerships that leverage cross-disciplinary expertise, integrating cutting-edge science with practical applications.

Their grading criteria also give you some early insight into what they are interested in receiving:

  1. The scientific merit and technical approach of the proposed research (40 points)
  2. The level of innovation the proposed effort offers to the research topic area (20 points)
  3. Consideration of an application’s commercial and societal impacts and potential applications (20 points)
  4. Qualifications of the proposed principal/key investigators, supporting staff, and consultants and availability of instrumentation and physical facilities necessary to complete the proposed work (20 points)

How to Apply

Because of the previous trends, we anticipate NOAA will publish a similar list of research topics along the same lines as the last few years within the next several months. With a deadline being between December and March, it’s in your best interest to begin preparing your application now. Here are the first three early steps I’d recommend for you to get a headstart:

  • Check your eligibility
    • You must be a for-profit organization.
    • You must have fewer than 500 employees
    • You must be primarily owned by a U.S. citizen or permanent resident
    • You must not be majority owned by venture capital or private equity
  • Complete your registrations
    • System for Award Management (SAM) — registration can take over a month and must be renewed on an annual basis.
    • Small Business Association SBA — registration can take up to 90 days.
    • Grants.gov — registration typically takes between three to 10 business days.
  • Start writing your first sections
    • Develop your abstract and specific aims. If possible, schedule a meeting with a program manager from NOAA to review and provide early feedback on these early sections.

Don’t Forget About Asking for Help

Practice regular and open communication with NOAA and their SBIR program managers. Ask questions early and often to make sure you have the best chance of receiving positive feedback when you finally submit your application. I’d encourage you to find previous NOAA SBIR reviewers to do a preliminary review before your submission. Since these solicitations only come around once a year, it’s worth the time and effort to polish your application to the highest degree. If you’re worried about the time commitment of writing a 15 page application for funding, find a local grant writer (or grant writing firm) to help with application and submission process.

Finally, good luck to all you NOAA applications as you innovate in such a way to make the world a better place.

------

Robert Wegner is the director of business development for Baginski Wegner and Company (BW&CO).

The potential SBIR rewards far outweigh the challenges, and with determination, your startup could be the next success story. Photo via Getty Images

Expert: Demystifying SBIR grants for Houston startups

guest column

Grants are everywhere, all the time, but often seem unobtainable for startups. Most companies tell me about their competitors winning grants but don’t know how to secure non-dilutive funding for themselves. It’s true that the SBIR program is competitive — with only 10 to 15 percent of applicants receiving awards — but with a little guidance and perseverance, they are most definitely obtainable.

An SBIR overview

The Small Business Innovation Research program was introduced on the federal level in 1982 with the purpose of de-risking early technologies. While most investors are hesitant to invest in a company that’s still in ideation, the SBIR program would provide an initial level of feasibility funding to develop a prototype. The program issues funds to companies without taking any equity, IP, or asking for the money back.

Since its inception, the SBIR program has funded over 200,000 projects through 11 different federal agencies, including, but not limited to, the Department of Defense, the National Institute of Health, and the National Science Foundation. Federal agencies with R&D budgets over $100 million dedicate at least 3.2 percent of their budget to the SBIR program to fund research initiated by small businesses.

Eligibility and application process

It is no surprise that only small businesses can apply for this non-dilutive funding. For SBIR purposes, a small business is defined as being a for-profit entity, smaller than 500 employees, 51 percent owned by US citizens or permanent residents, and not primarily owned by venture capital groups. This small business must also have the rights to the IP that needs de-risking.

To apply, the small business must have a specific project that needs funding. Normally, this project will have three specific aims that detail the action items that will be attempted during the funded period. Some agencies require a pre-application, like a letter of intent (DOE) or a project pitch (NSF). Others don’t have a screening process and you can simply submit a full application at the deadline. Most agencies published examples of funded or denied applications for you to review.

SBIR phases

Phase I of the SBIR program is the normal entry point for every agency. It takes your product from ideation, through a feasibility study, to having a prototype. While agencies provide various funding amounts, the range is between $75,000 to $300,000 for 3 to 12 months of R&D activities. Applications contain a feasibility research plan (around six pages), an abstract, specific aims, supporting documents, and a budget.

While some programs allow for Direct to Phase II (D2P2) applications, most don’t apply for Phase II until they have secured Phase I funding. This second phase allows companies with completed feasibility studies to test their new prototype at a larger scale. The budgets for this phase range from $600,000 to $3 million and span an average of two years. The research plan is twice as robust and a commercialization plan is also needed.

Tips for success

If you’re wondering if your technology would be a good fit for a certain program, you can start by looking at the SBIR website to see the previously funded projects. The more recent projects will give you an idea of the funding priorities for each agency. Most abstracts will allude to the specific aims, meaning you can get a sense of the research projects that were approved. If you regularly see an agency funding projects similar to yours, you can search sbir.gov/topics for that agency’s research topics and upcoming deadlines.

Your team is one of the most important aspects of the application. Since you will be reviewed by academic experts, it’s helpful to have a principal investigator on your project that has a history of experience or publications with similar technology. Keep in mind that this principal investigator must be primarily employed by your company at the time of the grant. If this individual is employed by a university or nonprofit research organization, consider taking the STTR route so you can utilize their expertise.

Preparing Phase I applications should take no less than eight weeks, and Phase II should take at least ten. Your first step should be read the entire solicitation and create action items. The early action items should be

  1. Completing government registrations, like SAM.gov
  2. Writing your abstract and specific aims
  3. Contacting the program manager or director for early feedback

Any bids, estimates, or letters of support may also take time to receive, so don’t delay pursuing these items.

Don’t stop trying

If you speak to any program officer, they will encourage you to keep applying. For resubmissions, you will have a chance to explain why your previous application was denied and what you’ve done to improve. Most companies receive funding on the resubmission. If you get the feeling that a specific agency isn’t the right fit, reach out to other agencies that may be interested in the technology. You may realize that a small pivot may open up better opportunities.

There are frequently published webinars from different agencies that will give overviews of the specific solicitations and allow for Q&A. If you feel stuck or are still concerned about getting started, reach out to an individual or group that can provide guidance. There are plenty of grant writers, some of which have reviewed for the SBIR program for different agencies, who can provide strategy, guidance, reviews, and writing services to provide different levels of help.

Securing SBIR funding can be a game-changer for startups. While the process may seem daunting at first, with the right approach and persistence, it’s very obtainable. Remember, each application is a learning experience, and every iteration brings you closer to success. Whether you seek support from webinars, program officers, or professional grant writers, the key is to keep pushing forward. The potential rewards far outweigh the challenges, and with determination, your startup could be the next SBIR success story.

------

Robert Wegner is the director of business development for Euroleader.

Houston-area Ad Astra Rocket Company, which is working on a technology that could increase the speed of space travel, received fresh funding from NASA. Photo via NASA.gov

NASA doles out $98M in funding to small business innovators, including 6 Texas firms

grants lifting off

Almost 100 small businesses with aerospace technology received the greenlight from NASA on their proposals for grant funding.

NASA approved 112 proposals from 92 small businesses in April. These businesses will receive a slice of the $98 million Phase II funding from the Small Business Innovation Research program. The early-stage $850,000 SBIR grants allow awardees to build on their success from the program's first phase. The firms will have 24 months to execute on their proposals with the fresh funding.

“These Phase II awards support a breadth of technologies that have the potential to be transformational for so many different projects and missions across NASA,” says Jenn Gustetic, director of early stage innovation and partnerships for NASA's Space Technology Mission Directorate, in a news release. “In addition, it’s important that we’re including the innovative potential of all of America’s small businesses and entrepreneurs, so we’re proud that 28% of these awards are to underrepresented small businesses and 31% are to first time SBIR Phase II awardees."

Six of the award recipients are based in Texas. Here are the companies and their proposal technology:

  • Ad Astra Rocket Company, headquartered in Webster: Improved Thermo-Mechanical Design of the VASIMR RF Coupler
  • Lunar Resources Inc., headquartered in Houston: Ultra-Electrical-Efficient Process to Perform Regolith Additive Manufacturing of Complex Structures
  • Lynntech Inc., headquartered in College Station: Miniaturized Reagent Regenerative Ion Analyzer for Elemental Analysis
  • QED Secure Solutions, headquartered in Coppell: Avionics Intrusion Detection and Attack Identification
  • Stone Aerospace Inc., headquartered in Del Valle: Sediment Sequestration for Hot Water Drilling Cryobots
  • Texas Research Institute Austin Inc., headquartered in Austin: Accelerated Creep Test Methodologies for Space Habitat Softgood Structural Materials

The Ad Astra Rocket Company's technology, the Variable Specific Impulse Magnetoplasma Rocket, or VASIMR, is an electrothermal thruster that, once developed using the grant, would allow for faster space travel.

“Our program has the responsibility of supporting ideas and technologies that will have impact on NASA’s work and have strong commercial potential,” says Jason L. Kessler, program executive for NASA's SBIR and Small Business Technology Transfer program, in the release. “We're always excited when we can find technologies that help our agency's missions while also having direct benefits for all."

NASA's SBIR program, which takes no equity, offers up to $1 million to selected business during the first three years. Post Phase II opportunities include up to nearly $3 million in funding. The program is a part of NASA's Space Technology Mission Directorate and managed by NASA’s Ames Research Center in California's Silicon Valley.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Intuitive Machines to acquire NASA-certified deep space navigation company

space deal

Houston-based space technology, infrastructure and services company Intuitive Machines has agreed to buy Tempe, Arizona-based aerospace company KinetX for an undisclosed amount.

The deal is expected to close by the end of this year, according to a release from the company.

KinetX specializes in deep space navigation, systems engineering, ground software and constellation mission design. It’s the only company certified by NASA for deep space navigation. KinetX’s navigation software has supported both of Intuitive Machines’ lunar missions.

Intuitive Machines says the acquisition marks its entry into the precision navigation and flight dynamics segment of deep space operations.

“We know our objective, becoming an indispensable infrastructure services layer for space exploration, and achieving it requires intelligent systems and exceptional talent,” Intuitive Machines CEO Steve Altemus said in the release. “Bringing KinetX in-house gives us both: flight-proven deep space navigation expertise and the proprietary software behind some of the most ambitious missions in the solar system.”

KinetX has supported deep space missions for more than 30 years, CEO Christopher Bryan said.

“Joining Intuitive Machines gives our team a broader operational canvas and shared commitment to precision, autonomy, and engineering excellence,” Bryan said in the release. “We’re excited to help shape the next generation of space infrastructure with a partner that understands the demands of real flight, and values the people and tools required to meet them.”

Intuitive Machines has been making headlines in recent weeks. The company announced July 30 that it had secured a $9.8 million Phase Two government contract for its orbital transfer vehicle. Also last month, the City of Houston agreed to add three acres of commercial space for Intuitive Machines at the Houston Spaceport at Ellington Airport. Read more here.

Japanese energy tech manufacturer moves U.S. headquarters to Houston

HQ HOU

TMEIC Corporation Americas has officially relocated its headquarters from Roanoke, Virginia, to Houston.

TMEIC Corporation Americas, a group company of Japan-based TMEIC Corporation Japan, recently inaugurated its new space in the Energy Corridor, according to a news release. The new HQ occupies the 10th floor at 1080 Eldridge Parkway, according to ConnectCRE. The company first announced the move last summer.

TMEIC Corporation Americas specializes in photovoltaic inverters and energy storage systems. It employs approximately 500 people in the Houston area, and has plans to grow its workforce in the city in the coming year as part of its overall U.S. expansion.

"We are thrilled to be part of the vibrant Greater Houston community and look forward to expanding our business in North America's energy hub," Manmeet S. Bhatia, president and CEO of TMEIC Corporation Americas, said in the release.

The TMEIC group will maintain its office in Roanoke, which will focus on advanced automation systems, large AC motors and variable frequency drive systems for the industrial sector, according to the release.

TMEIC Corporation Americas also began operations at its new 144,000-square-foot, state-of-the-art facility in Brookshire, which is dedicated to manufacturing utility-scale PV inverters, earlier this year. The company also broke ground on its 267,000-square-foot manufacturing facility—its third in the U.S. and 13th globally—this spring, also in Waller County. It's scheduled for completion in May 2026.

"With the global momentum toward decarbonization, electrification, and domestic manufacturing resurgence, we are well-positioned for continued growth," Bhatia added in the release. "Together, we will continue to drive industry and uphold our legacy as a global leader in energy and industrial solutions."

---

This article originally appeared on EnergyCapitalHTX.com.

2 Texas cities named on LinkedIn's inaugural 'Cities on the Rise'

jobs data

LinkedIn’s 2025 Cities on the Rise list includes two Texas cities in the top 25—and they aren’t Houston or Dallas.

The Austin metro area came in at No. 18 and the San Antonio metro at No. 23 on the inaugural list that measures U.S. metros where hiring is accelerating, job postings are increasing and talent migration is “reshaping local economies,” according to the company. The report was based on LinkedIn’s exclusive labor market data.

According to the report, Austin, at No. 18, is on the rise due to major corporations relocating to the area. The datacenter boom and investments from tech giants are also major draws to the city, according to LinkedIn. Technology, professional services and manufacturing were listed as the city’s top industries with Apple, Dell and the University of Texas as the top employers.

The average Austin metro income is $80,470, according to the report, with the average home listing at about $806,000.

While many write San Antonio off as a tourist attraction, LinkedIn believes the city is becoming a rising tech and manufacturing hub by drawing “Gen Z job seekers and out-of-state talent.”

USAA, U.S. Air Force and H-E-B are the area’s biggest employers with professional services, health care and government being the top hiring industries. With an average income of $59,480 and an average housing cost of $470,160, San Antonio is a more affordable option than the capital city.

The No. 1 spot went to Grand Rapids due to its growing technology scene. The top 10 metros on the list include:

  • No. 1 Grand Rapids, Michigan
  • No. 2 Boise, Idaho
  • No. 3 Harrisburg, Pennsylvania
  • No. 4 Albany, New York
  • No. 5 Milwaukee, Wisconsin
  • No. 6 Portland, Maine
  • No. 7 Myrtle Beach, South Carolina
  • No. 8 Hartford, Connecticut
  • No. 9 Nashville, Tennessee
  • No. 10 Omaha, Nebraska

See the full report here.