The potential SBIR rewards far outweigh the challenges, and with determination, your startup could be the next success story. Photo via Getty Images

Grants are everywhere, all the time, but often seem unobtainable for startups. Most companies tell me about their competitors winning grants but don’t know how to secure non-dilutive funding for themselves. It’s true that the SBIR program is competitive — with only 10 to 15 percent of applicants receiving awards — but with a little guidance and perseverance, they are most definitely obtainable.

An SBIR overview

The Small Business Innovation Research program was introduced on the federal level in 1982 with the purpose of de-risking early technologies. While most investors are hesitant to invest in a company that’s still in ideation, the SBIR program would provide an initial level of feasibility funding to develop a prototype. The program issues funds to companies without taking any equity, IP, or asking for the money back.

Since its inception, the SBIR program has funded over 200,000 projects through 11 different federal agencies, including, but not limited to, the Department of Defense, the National Institute of Health, and the National Science Foundation. Federal agencies with R&D budgets over $100 million dedicate at least 3.2 percent of their budget to the SBIR program to fund research initiated by small businesses.

Eligibility and application process

It is no surprise that only small businesses can apply for this non-dilutive funding. For SBIR purposes, a small business is defined as being a for-profit entity, smaller than 500 employees, 51 percent owned by US citizens or permanent residents, and not primarily owned by venture capital groups. This small business must also have the rights to the IP that needs de-risking.

To apply, the small business must have a specific project that needs funding. Normally, this project will have three specific aims that detail the action items that will be attempted during the funded period. Some agencies require a pre-application, like a letter of intent (DOE) or a project pitch (NSF). Others don’t have a screening process and you can simply submit a full application at the deadline. Most agencies published examples of funded or denied applications for you to review.

SBIR phases

Phase I of the SBIR program is the normal entry point for every agency. It takes your product from ideation, through a feasibility study, to having a prototype. While agencies provide various funding amounts, the range is between $75,000 to $300,000 for 3 to 12 months of R&D activities. Applications contain a feasibility research plan (around six pages), an abstract, specific aims, supporting documents, and a budget.

While some programs allow for Direct to Phase II (D2P2) applications, most don’t apply for Phase II until they have secured Phase I funding. This second phase allows companies with completed feasibility studies to test their new prototype at a larger scale. The budgets for this phase range from $600,000 to $3 million and span an average of two years. The research plan is twice as robust and a commercialization plan is also needed.

Tips for success

If you’re wondering if your technology would be a good fit for a certain program, you can start by looking at the SBIR website to see the previously funded projects. The more recent projects will give you an idea of the funding priorities for each agency. Most abstracts will allude to the specific aims, meaning you can get a sense of the research projects that were approved. If you regularly see an agency funding projects similar to yours, you can search sbir.gov/topics for that agency’s research topics and upcoming deadlines.

Your team is one of the most important aspects of the application. Since you will be reviewed by academic experts, it’s helpful to have a principal investigator on your project that has a history of experience or publications with similar technology. Keep in mind that this principal investigator must be primarily employed by your company at the time of the grant. If this individual is employed by a university or nonprofit research organization, consider taking the STTR route so you can utilize their expertise.

Preparing Phase I applications should take no less than eight weeks, and Phase II should take at least ten. Your first step should be read the entire solicitation and create action items. The early action items should be

     
  1. Completing government registrations, like SAM.gov
  2. Writing your abstract and specific aims
  3. Contacting the program manager or director for early feedback

Any bids, estimates, or letters of support may also take time to receive, so don’t delay pursuing these items.

Don’t stop trying

If you speak to any program officer, they will encourage you to keep applying. For resubmissions, you will have a chance to explain why your previous application was denied and what you’ve done to improve. Most companies receive funding on the resubmission. If you get the feeling that a specific agency isn’t the right fit, reach out to other agencies that may be interested in the technology. You may realize that a small pivot may open up better opportunities.

There are frequently published webinars from different agencies that will give overviews of the specific solicitations and allow for Q&A. If you feel stuck or are still concerned about getting started, reach out to an individual or group that can provide guidance. There are plenty of grant writers, some of which have reviewed for the SBIR program for different agencies, who can provide strategy, guidance, reviews, and writing services to provide different levels of help.

Securing SBIR funding can be a game-changer for startups. While the process may seem daunting at first, with the right approach and persistence, it’s very obtainable. Remember, each application is a learning experience, and every iteration brings you closer to success. Whether you seek support from webinars, program officers, or professional grant writers, the key is to keep pushing forward. The potential rewards far outweigh the challenges, and with determination, your startup could be the next SBIR success story.

------

Robert Wegner is the director of business development for Euroleader.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas cybersecurity co. expands unique train-to-hire model to Houston

job search

It’s increasingly more difficult to ensure the confidentiality, integrity, and availability of proprietary data and information in the ever-changing, ever-evolving digital world.

Cyberattacks, including malware, phishing, and ransomware, are becoming increasingly common and sophisticated, posing a consistent threat to a company’s sustainability and bottom line.

To combat that trend, Nukudo, a San Antonio-based cybersecurity workforce development company, is expanding its initiative to bridge the global cybersecurity talent gap through immersive training and job placement to Houston.

“We saw that there was a need in the market because there's a shortage of skilled manpower within the cybersecurity industry and other digital domains,” says Dean Gefen, CEO of NukuDo. “So, our initial goal was to take a large pool of people and then make them to be fully operational in cybersecurity in the shortest amount of time.”

The company refers to the plan as the “training-to-employment model,” which focuses on providing structured training to select individuals who then acquire the skills and knowledge necessary to secure and maintain fruitful careers.

The company identifies potential associates through its proprietary aptitude test, which recognizes individuals who possess the innate technical acumen and potential for success in various cybersecurity roles, regardless of their level of education.

“We take in people from all walks of life, meaning the program is purely based on the associate’s potential,” Gefen says. “We have people who were previously aircraft engineers, teachers, graphic designers, lawyers, insurance agents and so forth.”

Once selected, associates are trained by cybersecurity experts while gaining hands-on experience through scenario-based learning, enabling them to be deployed immediately as fully operational cybersecurity professionals.

The program training lasts just six months—all paid—followed by three years of guaranteed employment with NukuDo.

While in training, associates are paid $ 4,000 per month; then, they’re compensated by nearly double that amount over the next three years, ultimately pushing their salaries to well into the six figures after completing the entire commitment.

In addition to fostering a diverse talent pipeline in the cybersecurity field, NukuDo is creating a comprehensive solution to address the growing shortage of technical talent in the global workforce.

And arming people with new marketable skills has a litany of benefits, both professional and personal, Gefen says.

“Sometimes, we have associates who go on to make five times their previous salary,” says Gefen. “Add to that fact that we had someone that had a very difficult life beforehand and we were able to put him on a different path. That really hits home for us that we are making a difference.

Nulkudo currently has partnerships with companies such as Accenture Singapore and Singapore Airlines. Gefen says he and his team plans to have a new class of associates begin training every month by next year and take the model to the Texas Triangle (Houston, Austin and Dallas)—then possibly nationwide.

“The great thing about our program is that we train people above the level of possible threat of replacement by artificial intelligence,” Gefen says. “But what we are also doing, and this is due to requirements that we have received from clients that are already hiring our cyber professionals, is that we are now starting to deliver AI engineers and data scientists in other domains.”

“That means that we have added more programs to our cybersecurity program. So, we're also training people in data science and machine learning,” he continues.

All interested candidates for the program should be aware that a college degree is not required. NukuDo is genuinely interested in talented individuals, regardless of their background.

“The minimum that we are asking for is high school graduates,” Gefen says. “They don't need to have a college degree; they just need to have aptitude. And, of course, they need to be hungry to make this change.”

2 Houston universities declared among world’s best in 2026 rankings

Declaring the Best

Two Houston universities are in a class of their own, earning top spots on a new global ranking of the world's best universities.

Rice University and University of Houston are among the top 1,200 schools included in the QS World University Rankings 2026. Ten more schools across Texas make the list.

QS (Quacquarelli Symonds), a London-based provider of higher education data and analytics, compiles the prestigious list each year; the 2026 edition includes more than 1,500 universities from around the world. Factors used to rank the schools include academic reputation; employer reputation; faculty-student ratio; faculty research; and international research, students, and faculty.

In Texas, University of Texas at Austin lands at No. 1 in the state, No. 20 in the U.S., and No. 68 globally.

Houston's Rice University is close behind as Texas' No. 2 school. It ranks 29th in the U.S. and No. 119 in the world. Unlike UT, which fell two spots globally this year (from No. 66 to 68), Rice climbed up the charts, moving from 141st last year to No. 119.

University of Houston impresses as Texas' 4th highest-ranked school. It lands at No. 80 in the U.S. and No. 556 globally, also climbing about 100 spots up the chart.

Rice and UH are on a roll in regional, national, and international rankings this year.

Rice earned top-15 national rankings by both Niche.com and Forbes last fall. Rice claimed No. 1 and UH ranked No. 8 in Texas in U.S. News & World Report's 2025 rankings. Rice also topped WalletHub's 2025 list of the best colleges and universities in Texas for 2025.

More recently, in April, both UH and Rice made U.S. News' 2025 list of top grad schools.

In all, 192 U.S. universities made the 2026 QS World University Rankings — the most of any country. Topping the global list is the Massachusetts Institute of Technology (MIT).

“The results show that while U.S. higher education remains the global leader, its dominance is increasingly challenged by fast-rising emerging systems,” says the QS World University Rankings report. “A decade ago, 32 American universities [were] featured in the world’s top 100; today, that number has dropped to 26, and only 11 of these institutions have improved their position this year."

The 12 Texas universities that appear in the QS World University Rankings 2026 list are:

  • University of Texas at Austin, No. 20 in the U.S. and No. 68 in the world (down from No. 66 last year).
  • Rice University, No. 29 in the U.S. and No. 119 in the world (up from No. 141 last year).
  • Texas A&M University, No. 32 in the U.S. and No. 144 in the world (up from No. 154 last year).
  • University of Houston, No. 80 in the U.S. and No. 556 in the world (up from 651-660 last year).
  • University of Texas at Dallas, No. 85 in the U.S. and No. 597 in the world (down from 596 last year).
  • Texas Tech University, No. 104 in the U.S. and No. 731-740 in the world (unchanged from last year).
  • University of North Texas, No. 123 in the U.S. and No. 901-950 in the world (up from 1,001-1,200 last year)
  • Baylor University, tied for No. 136 in the U.S. and at No. 1,001-1,200 in the world (unchanged from last year).
  • Southern Methodist University, tied for No. 136 in the U.S. and at 1,001-1,200 in the world (unchanged from last year).
  • University of Texas Arlington, tied for No. 136 in the U.S. and at 1,001-1,200 in the world (unchanged from last year).
  • University of Texas at San Antonio, tied for No. 136 in the U.S. and at 1,001-1,200 in the world (unchanged from last year).
  • University of Texas at El Paso, No. 172 in the U.S. and at 1,201-1,400 in the world (down from 1,001-1,200 last year).
---

This article originally appeared on CultureMap.com.

Houston students develop new device to prepare astronauts for outer space

space race

Rice University students from the George R. Brown School of Engineering and Computing designed a space exercise harness that is comfortable, responsive, and adaptable and has the potential to assist with complex and demanding spacewalks.

A group of students—Emily Yao, Nikhil Ashri, Jose Noriega, Ben Bridges and graduate student Jack Kalicak—mentored by assistant professor of mechanical engineering Vanessa Sanchez, modernized harnesses that astronauts use to perform rigorous exercises. The harnesses are particularly important in preparing astronauts for a reduced-gravity space environment, where human muscles and bones atrophy faster than they do on Earth. However, traditional versions of the harnesses had many limitations that included chafing and bruising.

The new harnesses include sensors for astronauts to customize their workouts by using real-time data and feedback. An additional two sensors measure astronauts’ comfort and exercise performance based on temperature and humidity changes during exercise and load distribution at common pressure points.

“Our student-led team addressed this issue by adding pneumatic padding that offers a customized fit, distributes pressure over a large surface area to reduce discomfort or injuries and also seamlessly adapts to load shifts — all of which together improved astronauts’ performance,” Sanchez said in a news release. “It was very fulfilling to watch these young engineers work together to find innovative and tangible solutions to real-world problems … This innovative adjustable exercise harness transforms how astronauts exercise in space and will significantly improve their health and safety during spaceflights.”

The project was developed in response to a challenge posted by the HumanWorks Lab and Life Science Labs at NASA and NASA Johnson Space Center for the 2025 Technology Collaboration Center’s (TCC) Wearables Workshop and University Challenge, where teams worked to solve problems for industry leaders.

Rice’s adaptive harness won the Best Challenge Response Award. It was funded by the National Science Foundation and Rice’s Office of Undergraduate Research and Inquiry.

“This challenge gave us the freedom to innovate and explore possibilities beyond the current harness technology,” Yao added in the release. “I’m especially proud of how our team worked together to build a working prototype that not only has real-world impact but also provides a foundation that NASA and space companies can build and iterate upon.”