Researchers from Baylor College of Medicine and the University of Houston have developed a new blood-filtering machine that poses fewer risks to pediatric patients with hyperleukocytosis. Photo courtesy UH.

A team of Houston researchers has developed a new microfluidic device aimed at making treatments safer for children with hyperleukocytosis, a life-threatening hematologic emergency often seen in patients with leukemia.

Dr. Fong Lam, an associate professor of pediatrics at Baylor College of Medicine and a pediatric intensive care physician at Texas Children’s Hospital, partnered with Sergey Shevkoplyas, a professor of biomedical engineering at UH, on the device that uses a large number of tiny channels to quickly separate blood cells by size in a process called controlled incremental filtration, according to a news release from UH.

They tested whether performing cell separation with a high-throughput microfluidic device could alleviate the limitations of traditional conventional blood-filtering machines, which pose risks for pediatric patients due to their large extracorporeal volume (ECV), high flow rates and tendency to cause significant platelet loss in the patient. The results of their study, led by Mubasher Iqbal, a Ph.D. candidate in biomedical engineering at UH, were published recently in the journal Nature Communications.

“Continuously and efficiently separating leukocytes from recirculating undiluted whole blood — without device clogging and cell activation or damage — has long been a major challenge in microfluidic cell separation,” Shevkoplyas said in a news release. “Our study is the first to solve this problem.”

Hyperleukocytosis is a condition that develops when the body has an extremely high number of white blood cells, which in many cases is due to leukemia. According to the release, up to 20 percent to 30 percent of patients with acute leukemia develop hyperleukocytosis, and this places them at risk for potentially fatal complications.

The new device utilizes tiny channels—each about the width of a human hair—to efficiently separate blood cells through controlled incremental filtration. According to Lam, the team was excited that the new device could operate at clinically relevant flow rates.

The device successfully removed approximately 85 percent of large leukocytes and 90 percent of leukemic blasts from undiluted human whole blood without causing platelet loss or other adverse effects. It also operates with an ECV that’s about 1/70th of conventional leukapheresis machines, which makes it particularly suitable for infants and small children.

“Overall, our study suggests that microfluidics leukapheresis is safe and effective at selectively removing leukocytes from circulation, with separation performance sufficiently high to ultimately enable safe leukapheresis in children,” Shevkoplyas said in the release.

Houston-based CorInnova is gearing up to pitch at a prestigious event. Photo via CorInnova.com

Houston health tech company tapped for prestigious pediatric medical device competition

ready to pitch

Houston-based medtech company CorInnova is gearing up for what could be a big payday.

CorInnova is among five medtech companies that have been invited to present pitches in October for the National Capital Consortium for Pediatric Device Innovation’s “Make Your Medical Device Pitch for Kids!” competition.

CorInnova and the four other finalists now have access to a four-month pediatric accelerator program led by MedTech Innovator and will vie for a share of $150,000 in grant funding from the U.S. Food and Drug Administration (FDA). The pitch event is part of the 10th annual Symposium on Pediatric Device Innovation.

“Addressing unmet needs across pediatric populations is critical to advancing children’s health, and we are delighted to once again work with pioneering companies that seek to bridge this care gap,” says Kolaeh Eskandanian, president and chief innovation officer at Children’s National Hospital and principal investigator for the pediatric device consortium.

CorInnova has developed a minimally invasive device for the treatment of congestive heart failure. Specifically, CorInnova’s soft, flexible device can be inserted through a 1-inch incision to increase the amount of blood pumping in the heart by 50 percent.

The device’s primary benefit is that there’s no contact with blood, thus minimizing complications when the device is being used. Blood contact during a heart procedure can increase the risk of health problems such as stroke and kidney disfunction.

“The device is collapsible, allowing it to be delivered and secured to the heart in a minimally invasive manner. The device conforms to the heart’s surface, and gently compresses the heart to increase cardiac output using an external pneumatic driver that operates in synchrony with the heartbeat,” CorInnova explains on its website.

In the U.S., around 40,000 babies are born each year with congenital heart defects. About one-fourth of these newborns have critical defects, often prompting the need for surgery or other procedures.

Since being founded in 2004, CorInnova has raised at least $6.3 million, according to Crunchbase. This includes a $6.1 million investment from Wellcome Trust, a London-based charitable foundation that focuses on biomedical research.

Aside from the MedTech Innovator accelerator, CorInnova has participated in the TMC Accelerator’s fall 2019 accelerator program for medical device makers and the fall 2018 gBETA Medtech accelerator program.

The four other finalists in the medtech pitch competition are:

  • La Palma, California-based Innovation Lab, whose mechanical elbow brace stabilizes tremors in some pediatric patients with cerebral palsy.
  • Biddeford, Maine-based Prapela, whose vibrating pad helps treat apnea in newborns.
  • Richmond, Virginia-based Tympanogen, whose nonsurgical procedure takes the place of surgery for eardrum repair.
  • Xpan of Concord, Ontario, Canada, whose universal trocar (a surgical instrument) improves safety, access, and flexibility during various procedures.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Axiom Space-tested cancer drug advances to clinical trials

mission critical

A cancer-fighting drug tested aboard several Axiom Space missions is moving forward to clinical trials.

Rebecsinib, which targets a cancer cloning and immune evasion gene, ADAR1, has received FDA approval to enter clinical trials under active Investigational New Drug (IND) status, according to a news release. The drug was tested aboard Axiom Mission 2 (Ax-2) and Axiom Mission 3 (Ax-3). It was developed by Aspera Biomedicine, led by Dr. Catriona Jamieson, director of the UC San Diego Sanford Stem Cell Institute (SSCI).

The San Diego-based Aspera team and Houston-based Axiom partnered to allow Rebecsinib to be tested in microgravity. Tumors have been shown to grow more rapidly in microgravity and even mimic how aggressive cancers can develop in patients.

“In terms of tumor growth, we see a doubling in growth of these little mini-tumors in just 10 days,” Jamieson explained in the release.

Rebecsinib took part in the patient-derived tumor organoid testing aboard the International Space Station. Similar testing is planned to continue on Axiom Station, the company's commercial space station that's currently under development.

Additionally, the drug will be tested aboard Ax-4 under its active IND status, which was targeted to launch June 25.

“We anticipate that this monumental mission will inform the expanded development of the first ADAR1 inhibitory cancer stem cell targeting drug for a broad array of cancers," Jamieson added.

According to Axiom, the milestone represents the potential for commercial space collaborations.

“We’re proud to work with Aspera Biomedicines and the UC San Diego Sanford Stem Cell Institute, as together we have achieved a historic milestone, and we’re even more excited for what’s to come,” Tejpaul Bhatia, the new CEO of Axiom Space, said in the release. “This is how we crack the code of the space economy – uniting public and private partners to turn microgravity into a launchpad for breakthroughs.”

Chevron enters the lithium market with major Texas land acquisition

to market

Chevron U.S.A., a subsidiary of Houston-based energy company Chevron, has taken its first big step toward establishing a commercial-scale lithium business.

Chevron acquired leaseholds totaling about 125,000 acres in Northeast Texas and southwest Arkansas from TerraVolta Resources and East Texas Natural Resources. The acreage contains a high amount of lithium, which Chevron plans to extract from brines produced from the subsurface.

Lithium-ion batteries are used in an array of technologies, such as smartwatches, e-bikes, pacemakers, and batteries for electric vehicles, according to Chevron. The International Energy Agency estimates lithium demand could grow more than 400 percent by 2040.

“This acquisition represents a strategic investment to support energy manufacturing and expand U.S.-based critical mineral supplies,” Jeff Gustavson, president of Chevron New Energies, said in a news release. “Establishing domestic and resilient lithium supply chains is essential not only to maintaining U.S. energy leadership but also to meeting the growing demand from customers.”

Rania Yacoub, corporate business development manager at Chevron New Energies, said that amid heightening demand, lithium is “one of the world’s most sought-after natural resources.”

“Chevron is looking to help meet that demand and drive U.S. energy competitiveness by sourcing lithium domestically,” Yacoub said.

---

This article originally appeared on EnergyCapital.