Researchers from Baylor College of Medicine and the University of Houston have developed a new blood-filtering machine that poses fewer risks to pediatric patients with hyperleukocytosis. Photo courtesy UH.

A team of Houston researchers has developed a new microfluidic device aimed at making treatments safer for children with hyperleukocytosis, a life-threatening hematologic emergency often seen in patients with leukemia.

Dr. Fong Lam, an associate professor of pediatrics at Baylor College of Medicine and a pediatric intensive care physician at Texas Children’s Hospital, partnered with Sergey Shevkoplyas, a professor of biomedical engineering at UH, on the device that uses a large number of tiny channels to quickly separate blood cells by size in a process called controlled incremental filtration, according to a news release from UH.

They tested whether performing cell separation with a high-throughput microfluidic device could alleviate the limitations of traditional conventional blood-filtering machines, which pose risks for pediatric patients due to their large extracorporeal volume (ECV), high flow rates and tendency to cause significant platelet loss in the patient. The results of their study, led by Mubasher Iqbal, a Ph.D. candidate in biomedical engineering at UH, were published recently in the journal Nature Communications.

“Continuously and efficiently separating leukocytes from recirculating undiluted whole blood — without device clogging and cell activation or damage — has long been a major challenge in microfluidic cell separation,” Shevkoplyas said in a news release. “Our study is the first to solve this problem.”

Hyperleukocytosis is a condition that develops when the body has an extremely high number of white blood cells, which in many cases is due to leukemia. According to the release, up to 20 percent to 30 percent of patients with acute leukemia develop hyperleukocytosis, and this places them at risk for potentially fatal complications.

The new device utilizes tiny channels—each about the width of a human hair—to efficiently separate blood cells through controlled incremental filtration. According to Lam, the team was excited that the new device could operate at clinically relevant flow rates.

The device successfully removed approximately 85 percent of large leukocytes and 90 percent of leukemic blasts from undiluted human whole blood without causing platelet loss or other adverse effects. It also operates with an ECV that’s about 1/70th of conventional leukapheresis machines, which makes it particularly suitable for infants and small children.

“Overall, our study suggests that microfluidics leukapheresis is safe and effective at selectively removing leukocytes from circulation, with separation performance sufficiently high to ultimately enable safe leukapheresis in children,” Shevkoplyas said in the release.

Houston-based CorInnova is gearing up to pitch at a prestigious event. Photo via CorInnova.com

Houston health tech company tapped for prestigious pediatric medical device competition

ready to pitch

Houston-based medtech company CorInnova is gearing up for what could be a big payday.

CorInnova is among five medtech companies that have been invited to present pitches in October for the National Capital Consortium for Pediatric Device Innovation’s “Make Your Medical Device Pitch for Kids!” competition.

CorInnova and the four other finalists now have access to a four-month pediatric accelerator program led by MedTech Innovator and will vie for a share of $150,000 in grant funding from the U.S. Food and Drug Administration (FDA). The pitch event is part of the 10th annual Symposium on Pediatric Device Innovation.

“Addressing unmet needs across pediatric populations is critical to advancing children’s health, and we are delighted to once again work with pioneering companies that seek to bridge this care gap,” says Kolaeh Eskandanian, president and chief innovation officer at Children’s National Hospital and principal investigator for the pediatric device consortium.

CorInnova has developed a minimally invasive device for the treatment of congestive heart failure. Specifically, CorInnova’s soft, flexible device can be inserted through a 1-inch incision to increase the amount of blood pumping in the heart by 50 percent.

The device’s primary benefit is that there’s no contact with blood, thus minimizing complications when the device is being used. Blood contact during a heart procedure can increase the risk of health problems such as stroke and kidney disfunction.

“The device is collapsible, allowing it to be delivered and secured to the heart in a minimally invasive manner. The device conforms to the heart’s surface, and gently compresses the heart to increase cardiac output using an external pneumatic driver that operates in synchrony with the heartbeat,” CorInnova explains on its website.

In the U.S., around 40,000 babies are born each year with congenital heart defects. About one-fourth of these newborns have critical defects, often prompting the need for surgery or other procedures.

Since being founded in 2004, CorInnova has raised at least $6.3 million, according to Crunchbase. This includes a $6.1 million investment from Wellcome Trust, a London-based charitable foundation that focuses on biomedical research.

Aside from the MedTech Innovator accelerator, CorInnova has participated in the TMC Accelerator’s fall 2019 accelerator program for medical device makers and the fall 2018 gBETA Medtech accelerator program.

The four other finalists in the medtech pitch competition are:

  • La Palma, California-based Innovation Lab, whose mechanical elbow brace stabilizes tremors in some pediatric patients with cerebral palsy.
  • Biddeford, Maine-based Prapela, whose vibrating pad helps treat apnea in newborns.
  • Richmond, Virginia-based Tympanogen, whose nonsurgical procedure takes the place of surgery for eardrum repair.
  • Xpan of Concord, Ontario, Canada, whose universal trocar (a surgical instrument) improves safety, access, and flexibility during various procedures.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston team develops low-cost device to treat infants with life-threatening birth defect

infant innovation

A team of engineers and pediatric surgeons led by Rice University’s Rice360 Institute for Global Health Technologies has developed a cost-effective treatment for infants born with gastroschisis, a congenital condition in which intestines and other organs are developed outside of the body.

The condition can be life-threatening in economically disadvantaged regions without access to equipment.

The Rice-developed device, known as SimpleSilo, is “simple, low-cost and locally manufacturable,” according to the university. It consists of a saline bag, oxygen tubing and a commercially available heat sealer, while mimicking the function of commercial silo bags, which are used in high-income countries to protect exposed organs and gently return them into the abdominal cavity gradually.

Generally, a single-use bag can cost between $200 and $300. The alternatives that exist lack structure and require surgical sewing. This is where the SimpleSilo comes in.

“We focused on keeping the design as simple and functional as possible, while still being affordable,” Vanshika Jhonsa said in a news release. “Our hope is that health care providers around the world can adapt the SimpleSilo to their local supplies and specific needs.”

The study was published in the Journal of Pediatric Surgery, and Jhonsa, its first author, also won the 2023 American Pediatric Surgical Association Innovation Award for the project. She is a recent Rice alumna and is currently a medical student at UTHealth Houston.

Bindi Naik-Mathuria, a pediatric surgeon at UTMB Health, served as the corresponding author of the study. Rice undergraduates Shreya Jindal and Shriya Shah, along with Mary Seifu Tirfie, a current Rice360 Global Health Fellow, also worked on the project.

In laboratory tests, the device demonstrated a fluid leakage rate of just 0.02 milliliters per hour, which is comparable to commercial silo bags, and it withstood repeated disinfection while maintaining its structure. In a simulated in vitro test using cow intestines and a mock abdominal wall, SimpleSilo achieved a 50 percent reduction of the intestines into the simulated cavity over three days, also matching the performance of commercial silo bags. The team plans to conduct a formal clinical trial in East Africa.

“Gastroschisis has one of the biggest survival gaps from high-resource settings to low-resource settings, but it doesn’t have to be this way,” Meaghan Bond, lecturer and senior design engineer at Rice360, added in the news release. “We believe the SimpleSilo can help close the survival gap by making treatment accessible and affordable, even in resource-limited settings.”

Oxy's $1.3B Texas carbon capture facility on track to​ launch this year

gearing up

Houston-based Occidental Petroleum is gearing up to start removing CO2 from the atmosphere at its $1.3 billion direct air capture (DAC) project in the Midland-Odessa area.

Vicki Hollub, president and CEO of Occidental, said during the company’s recent second-quarter earnings call that the Stratos project — being developed by carbon capture and sequestration subsidiary 1PointFive — is on track to begin capturing CO2 later this year.

“We are immensely proud of the achievements to date and the exceptional record of safety performance as we advance towards commercial startup,” Hollub said of Stratos.

Carbon dioxide captured by Stratos will be stored underground or be used for enhanced oil recovery.

Oxy says Stratos is the world’s largest DAC facility. It’s designed to pull 500,000 metric tons of carbon dioxide from the air and either store it underground or use it for enhanced oil recovery. Enhanced oil recovery extracts oil from unproductive reservoirs.

Most of the carbon credits that’ll be generated by Stratos through 2030 have already been sold to organizations such as Airbus, AT&T, All Nippon Airways, Amazon, the Houston Astros, the Houston Texans, JPMorgan, Microsoft, Palo Alto Networks and TD Bank.

The infrastructure business of investment manager BlackRock has pumped $550 million into Stratos through a joint venture with 1PointFive.

As it gears up to kick off operations at Stratos, Occidental is also in talks with XRG, the energy investment arm of the United Arab Emirates-owned Abu Dhabi National Oil Co., to form a joint venture for the development of a DAC facility in South Texas. Occidental has been awarded up to $650 million from the U.S. Department of Energy to build the South Texas DAC hub.

The South Texas project, to be located on the storied King Ranch, will be close to industrial facilities and energy infrastructure along the Gulf Coast. Initially, the roughly 165-square-mile site is expected to capture 500,000 metric tons of carbon dioxide per year, with the potential to store up to 3 billion metric tons of CO2 per year.

“We believe that carbon capture and DAC, in particular, will be instrumental in shaping the future energy landscape,” Hollub said.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.