A patent is an asset — says this Texas-based intellectual property expert. Photo via Getty Images

Seeking patent protection can offer a substantial competitive advantage to startups looking to raise capital, especially during a venture capital downturn. Besides the protection patents can provide against intellectual property theft, they are also assets that can translate into expansion opportunities and additional revenue streams. These factors are important to institutions and individuals that invest in startups, as they may reduce downside risks to their investments and help outline a growth trajectory.

As Kathi Vidal, under secretary of commerce for intellectual property and director of the U.S. Patent and Trademark Office, said during a speech last year, “having a [patent] pending application helps secure funding, and it keeps potential competitors out of your space.”

The experience of Austin-based VoChill, a startup that created a new line of personal wine chillers, offers a case study of how filing for patent protection as early as possible can set up any startup for success, not only when seeking to raise capital, but also when working to expand its commercial relationships and distribution channels.

Filing for patents quickly gave VoChill’s founders a competitive advantage when approaching potential investors, as it demonstrated the management team’s high level of preparedness and business acumen. For investors who eventually committed capital to the startup, the filings signaled a safer bet on investing in VoChill.

There is plenty of evidence indicating that patents help attract capital and generate growth opportunities. A study conducted by professors from Harvard Business School and New York University’s Stern School of Business found that patent protection increased startups’ odds of receiving venture capital funding by 59 percent.

PitchBook data shows that startups seeking patents raise more capital than their non-patent-seeking peers. About 58 percent of venture capital went to startups with patents or with patent applications from 2011 to 2020, the research firm notes.

Patents can also help drive a startup’s expansion and grow sales. According to the National Bureau of Economic Research, or NBER, the approval of a startup’s first patent application increases its employee growth by 36 percent over the following five years. After five years, a new company with a patent increases its sales by a cumulative 80 percent more than companies that do not have a patent.

Patents can also increase a startup’s chances of obtaining distribution deals or, in the case of consumer products, partnerships with retailers. In VoChill’s experience, patent protection is a recurring theme in conversations not only with investors but also distributors and retailers.

Patents offer startups the possibility to pursue a licensing model as well. Licensing or selling the rights to a patent so that others may produce products or processes based on that patent can bring in ongoing revenue streams.

Down the line, having patent protection can lead to better exit opportunities, be it by going public or via a private divestiture.

According to the NBER, having patents more than doubles the probability that a startup is eventually listed on a stock exchange.

PitchBook data, meanwhile, shows that patent-seeking companies go public at a rate more than five times higher than non-patent-seeking companies (23.2 percent versus 4 percent).

In the case of exits via a sale of the startup, the median exit value for patent-holding companies is 154.9 percent higher than it is for companies without patents per year on average, according to PitchBook.

While the business case for seeking patent protection is clear, startups should keep a few considerations in mind when seeking to do so. Understanding time bars is crucial; for example, the United States generally allows only one year to file a patent application after an invention is publicly written about, shown, used, or otherwise disclosed, and overseas often no one-year “grace period exists.”

Still, other important predicates are finding out whether the innovation is truly new, identifying the most crucial components of a product or system, and thinking about what aspects competitors are likely to discover and copy.

------

Chris Palermo is partner at Baker Botts where he specializes in intellectual property development. Lisa Pawlik is CEO of VoChill, a company that creates individual wine glass chillers.

A patent is an asset — one with a price associated with it when it comes to procuring a loan for your business. Photo via Getty Images

Rice research: What innovations can be used to borrow against?

Houston voices

For companies and leaders, patents represent important assets. They’re a marker of innovation and tech development. But patents do so much more than protect intellectual property. Firms increasingly deploy them as collateral to secure loans. Between 1995 and 2013, the number of patents pledged as loan collateral increased from about 10,000 to nearly 50,000. Forty percent of U.S. patenting firms have used patents as collateral.

However, patents are intangible assets, and their liquidity and liquidation value are difficult to assess. To evaluate an individual patent, lenders must consider the invention space to which the patent belongs. A patent’s linkage to prior inventions can provide important information for lenders, as the linkage affects the extent to which the patent under consideration may be redeployed and potentially purchased by other firms in the case of loan default.

Rice Business professor Yan Anthea Zhang examined more closely how this market operates and how both lenders and borrowers can make more informed decisions on which patents make appealing collateral. In their paper, “Which patents to use as loan collateral? The role of newness of patents' external technology linkage,” Zhang, who specializes in strategic management, and her co-authors studied the data on 107,180 U.S. semiconductor patents owned by 436 U.S. firms. The team focused on semiconductor patents because the semiconductor industry involves intensive innovation, which leads to many patent applications and grants. The market for semiconductor patents is an active and well-functioning market, given specialization in different stages of the innovation process and the growing technological market. Information on whether a patent was used as loan collateral came from the USPTO Patent Assignments Database.

Zhang and her colleagues argue that lenders prefer patents linked to prior inventions that are relatively new because these patents are riding on recent technology waves and are less likely to become obsolete. As a result, such patents are likely to remain deployable to other firms in the future. However, patents that are based upon too new prior inventions might not prove to be commercially viable and carry higher risk for lenders.

As a result of this research, Zhang and her colleagues found an inverted U-shape relationship to demonstrate the likelihood that a patent will be used as loan collateral. On one end, patents based upon the newest prior inventions, on the other, patents based upon mature prior inventions. The curve of the U-shape represents the sweet spot for patent collateral—the patents’ technological base is new enough to be relevant and competitive with other firms in its invention space, but not so new that it has yet to prove market success.

Zhang’s team also found that the impact of external linkage also varies depending on borrower attributes, especially the borrowers’ expertise in the invention space. If a borrower is a technological leader in the invention space, the market tends to give the borrower credit, and as a result, even if its patents are based upon very new prior inventions, its patents are still likely to be accepted as collateral.

------

This article originally ran on Rice Business Wisdom and was based on research from Yan Anthea Zhang, the Fayez Sarofim Vanguard Professor of Management at Rice Business.

Doris Taylor from the Texas Heart Institute has been named to the National Academy of Inventors.

Houston inventor receives national recognition for leading innovation

Leading lady

A Houston inventor is being recognized for her leadership within cardiovascular regenerative medicine. Doris A. Taylor from the Texas Heart Institute has been named among the National Academy of Inventors' 54 academic inventors to the spring 2019 class of NAI Senior Members.

Taylor's work involves finding alternatives for the current practices for organ transplants, including the whole organ decellularization/recellularization technologies she developed in 2008.

"Dr. Taylor's work has revolutionized the field by making it possible to bioengineer scaffolds that effectively mimic natural organs," says Dr. Darren Woodside, Texas Heart Institute's vice president for research, in a news release. "The three U.S. patents she currently holds have spun off 28 international patents, stimulating the worldwide tissue engineering industry. Her current research team is refining these technologies and developing others, potentially revolutionizing the transplantation industry and eliminating wait lists for life-saving transplantable organs."

NAI selects its honorees by identifying their impact on the welfare of society, the release reads, and have proven success with their patents, licensing, and commercialization.

NAI Senior Members are active faculty, scientists and administrators from its Member Institutions who have demonstrated remarkable innovation producing technologies that have brought, or aspire to bring, real impact on the welfare of society. They also have proven success in patents, licensing and commercialization.

An individual's nomination for the NAI Senior Member class by its supporting institution is a distinct honor and a significant way for the organization to publicly recognize its innovators on a national level.At their host institutions, Senior Members foster a spirit of innovation, while educating and mentoring the next generation of inventors.

The new class of NAI Senior Members includes representatives from 32 institutions. Texas A&M University has two researchers in the class — Robert Balog, an associate professor in the Department of Electrical and Computer Engineering, and Balakrishna Haridas, a professor of practice in the Department of Biomedical Engineering and executive director for technology commercialization and entrepreneurship for the Texas A&M Engineering Experiment Station.

This latest class of NAI Senior Members represents 32 research universities and government and non-profit research institutes. They are named inventors on over 860 issued U.S. patents. In February, two Houston inventors were named to the inaugural class of senior members.

"NAI Member Institutions support some of the most elite innovators on the horizon. With the NAI Senior Member award distinction, we are recognizing innovators that are rising stars in their fields," says Paul R. Sanberg, NAI president, in the release. "This new class is joining a prolific group of academic visionaries already defining tomorrow."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas tops ranking of best state for investors in new report

by the numbers

Texas ranks third on a new list of the best states for investors and startups.

Investment platform BrokerChooser weighed five factors to come up with its ranking:

  • 2024 Google search volume for terms related to investing
  • Number of investors
  • Number of businesses receiving investments in 2024
  • Total amount of capital invested in businesses in 2024
  • Percentage change in amount of investment from 2019 to 2024

Based on those figures, provided mostly by Crunchbase, Texas sits at No. 3 on the list, behind No. 1 California and No. 2 New York.

Especially noteworthy for Texas is its investment total for 2024: more than $164.5 billion. From 2019 to 2024, the state saw a 440 percent jump in business investments, according to BrokerChooser. The same percentages are 204 percent for California and 396 percent for New York.

“There is definitely development and diversification in the American investment landscape, with impressive growth in areas that used to fly under the radar,” says Adam Nasli, head analyst at BrokerChooser.

According to Crunchbase, funding for Texas startups is off to a strong start in 2025. In the first three months of this year, venture capital investors poured nearly $2.9 billion into Lone Star State companies, Crunchbase data shows. Crunchbase attributes that healthy dollar amount to “enthusiasm around cybersecurity, defense tech, robotics, and de-extincting mammoths.”

During the first quarter of this year, roughly two-thirds of VC funding in Texas went to just five companies, says Crunchbase. Those companies are Austin-based Apptronik, Austin-based Colossal Biosciences, Dallas-based Island, Austin-based NinjaOne, and Austin-based Saronic.

Autonomous truck company rolls out driverless Houston-Dallas route

up and running

Houston is helping drive the evolution of self-driving freight trucks.

In October, Aurora opened a more than 90,000-square-foot terminal at a Fallbrook Drive logistics hub in northwest Houston to support the launch of its first “lane” for driverless trucks—a Houston-to-Dallas route on the Interstate 45 corridor. Aurora opened its Dallas-area terminal in April and the company began regular driverless customer deliveries between the two Texas cities on April 27.

Close to half of all truck freight in Texas moves along I-45 between Houston and Dallas.

“Now, we are the first company to successfully and safely operate a commercial driverless trucking service on public roads. Riding in the back seat for our inaugural trip was an honor of a lifetime – the Aurora Driver performed perfectly and it’s a moment I’ll never forget,” Chris Urmson, CEO and co-founder of Pittsburgh-based Aurora, said in a news release.

Aurora produces software that controls autonomous vehicles and is known for its flagship product, the Aurora Driver. The software is installed in Volvo and Paccar trucks, the latter of which includes brands like Kenworth and Peterbilt.

Aurora previously hauled more than 75 loads per week under the supervision of vehicle operators from Houston to Dallas and Fort Worth to El Paso for customers in its pilot project, including FedEx, Uber Freight and Werner. To date, it has completed over 1,200 miles without a driver.

The company launched its new Houston to Dallas route with customers Uber Freight and Hirschbach Motor Lines, which ran supervised commercial pilots with Aurora.

“Transforming an old school industry like trucking is never easy, but we can’t ignore the safety and efficiency benefits this technology can deliver. Autonomous trucks aren’t just going to help grow our business – they’re also going to give our drivers better lives by handling the lengthier and less desirable routes,” Richard Stocking, CEO of Hirschbach Motor Lines, added in the statement.

The company plans to expand its service to El Paso and Phoenix by the end of 2025.

“These new, autonomous semis on the I-45 corridor will efficiently move products, create jobs, and help make our roadways safer,” Gov. Greg Abbott added in the release. “Texas offers businesses the freedom to succeed, and the Aurora Driver will further spur economic growth and job creation in Texas. Together through innovation, we will build a stronger, more prosperous Texas for generations.”

In July, Aurora said it raised $820 million in capital to fuel its growth—growth that’s being accompanied by scrutiny.

In light of recent controversies surrounding self-driving vehicles, the International Brotherhood of Teamsters, whose union members include over-the-road truckers, recently sent a letter to Lt. Gov. Dan Patrick calling for a ban on autonomous vehicles in Texas.

“The Teamsters believe that a human operator is needed in every vehicle—and that goes beyond partisan politics,” the letter states. “State legislators have a solemn duty in this matter to keep dangerous autonomous vehicles off our streets and keep Texans safe. Autonomous vehicles are not ready for prime time, and we urge you to act before someone in our community gets killed.”

Houston cell therapy company launches second-phase clinical trial

fighting cancer

A Houston cell therapy company has dosed its first patient in a Phase 2 clinical trial. March Biosciences is testing the efficacy of MB-105, a CD5-targeted CAR-T cell therapy for patients with relapsed or refractory CD5-positive T-cell lymphoma.

Last year, InnovationMap reported that March Biosciences had closed its series A with a $28.4 million raise. Now, the company, co-founded by Sarah Hein, Max Mamonkin and Malcolm Brenner, is ready to enroll a total of 46 patients in its study of people with difficult-to-treat cancer.

The trial will be conducted at cancer centers around the United States, but the first dose took place locally, at The University of Texas MD Anderson Cancer Center. Dr. Swaminathan P. Iyer, a professor in the department of lymphoma/myeloma at MD Anderson, is leading the trial.

“This represents a significant milestone in advancing MB-105 as a potential treatment option for patients with T-cell lymphoma who currently face extremely limited therapeutic choices,” Hein, who serves as CEO, says. “CAR-T therapies have revolutionized the treatment of B-cell lymphomas and leukemias but have not successfully addressed the rarer T-cell lymphomas and leukemias. We are optimistic that this larger trial will further validate MB-105's potential to address the critical unmet needs of these patients and look forward to reporting our first clinical readouts.”

The Phase 1 trial showed promise for MB-105 in terms of both safety and efficacy. That means that potentially concerning side effects, including neurological events and cytokine release above grade 3, were not observed. Those results were published last year, noting lasting remissions.

In January 2025, MB-105 won an orphan drug designation from the FDA. That results in seven years of market exclusivity if the drug is approved, as well as development incentives along the way.

The trial is enrolling its single-arm, two-stage study on ClinicalTrials.gov. For patients with stubborn blood cancers, the drug is providing new hope.