Houston voices

Rice research: What innovations can be used to borrow against?

A patent is an asset — one with a price associated with it when it comes to procuring a loan for your business. Photo via Getty Images

For companies and leaders, patents represent important assets. They’re a marker of innovation and tech development. But patents do so much more than protect intellectual property. Firms increasingly deploy them as collateral to secure loans. Between 1995 and 2013, the number of patents pledged as loan collateral increased from about 10,000 to nearly 50,000. Forty percent of U.S. patenting firms have used patents as collateral.

However, patents are intangible assets, and their liquidity and liquidation value are difficult to assess. To evaluate an individual patent, lenders must consider the invention space to which the patent belongs. A patent’s linkage to prior inventions can provide important information for lenders, as the linkage affects the extent to which the patent under consideration may be redeployed and potentially purchased by other firms in the case of loan default.

Rice Business professor Yan Anthea Zhang examined more closely how this market operates and how both lenders and borrowers can make more informed decisions on which patents make appealing collateral. In their paper, “Which patents to use as loan collateral? The role of newness of patents' external technology linkage,” Zhang, who specializes in strategic management, and her co-authors studied the data on 107,180 U.S. semiconductor patents owned by 436 U.S. firms. The team focused on semiconductor patents because the semiconductor industry involves intensive innovation, which leads to many patent applications and grants. The market for semiconductor patents is an active and well-functioning market, given specialization in different stages of the innovation process and the growing technological market. Information on whether a patent was used as loan collateral came from the USPTO Patent Assignments Database.

Zhang and her colleagues argue that lenders prefer patents linked to prior inventions that are relatively new because these patents are riding on recent technology waves and are less likely to become obsolete. As a result, such patents are likely to remain deployable to other firms in the future. However, patents that are based upon too new prior inventions might not prove to be commercially viable and carry higher risk for lenders.

As a result of this research, Zhang and her colleagues found an inverted U-shape relationship to demonstrate the likelihood that a patent will be used as loan collateral. On one end, patents based upon the newest prior inventions, on the other, patents based upon mature prior inventions. The curve of the U-shape represents the sweet spot for patent collateral—the patents’ technological base is new enough to be relevant and competitive with other firms in its invention space, but not so new that it has yet to prove market success.

Zhang’s team also found that the impact of external linkage also varies depending on borrower attributes, especially the borrowers’ expertise in the invention space. If a borrower is a technological leader in the invention space, the market tends to give the borrower credit, and as a result, even if its patents are based upon very new prior inventions, its patents are still likely to be accepted as collateral.

------

This article originally ran on Rice Business Wisdom and was based on research from Yan Anthea Zhang, the Fayez Sarofim Vanguard Professor of Management at Rice Business.

Trending News

 
 

Promoted

A research team housed out of the newly launched Rice Biotech Launch Pad received funding to scale tech that could slash cancer deaths in half. Photo via Rice University

A research funding agency has deployed capital into a team at Rice University that's working to develop a technology that could cut cancer-related deaths in half.

Rice researchers received $45 million from the National Institutes of Health's Advanced Research Projects Agency for Health, or ARPA-H, to scale up development of a sense-and-respond implant technology. Rice bioengineer Omid Veiseh leads the team developing the technology as principal investigator.

“Instead of tethering patients to hospital beds, IV bags and external monitors, we’ll use a minimally invasive procedure to implant a small device that continuously monitors their cancer and adjusts their immunotherapy dose in real time,” he says in a news release. “This kind of ‘closed-loop therapy’ has been used for managing diabetes, where you have a glucose monitor that continuously talks to an insulin pump. But for cancer immunotherapy, it’s revolutionary.”

Joining Veiseh on the 19-person research project named THOR, which stands for “targeted hybrid oncotherapeutic regulation,” is Amir Jazaeri, co-PI and professor of gynecologic oncology at the University of Texas MD Anderson Cancer Center. The device they are developing is called HAMMR, or hybrid advanced molecular manufacturing regulator.

“Cancer cells are continually evolving and adapting to therapy. However, currently available diagnostic tools, including radiologic tests, blood assays and biopsies, provide very infrequent and limited snapshots of this dynamic process," Jazaeri adds. "As a result, today’s therapies treat cancer as if it were a static disease. We believe THOR could transform the status quo by providing real-time data from the tumor environment that can in turn guide more effective and tumor-informed novel therapies.”

With a national team of engineers, physicians, and experts across synthetic biology, materials science, immunology, oncology, and more, the team will receive its funding through the Rice Biotech Launch Pad, a newly launched initiative led by Veiseh that exists to help life-saving medical innovation scale quickly.

"Rice is proud to be the recipient of the second major funding award from the ARPA-H, a new funding agency established last year to support research that catalyzes health breakthroughs," Rice President Reginald DesRoches says. "The research Rice bioengineer Omid Veiseh is doing in leading this team is truly groundbreaking and could potentially save hundreds of thousands of lives each year. This is the type of research that makes a significant impact on the world.”

The initial focus of the technology will be on ovarian cancer, and this funding agreement includes a first-phase clinical trial of HAMMR for the treatment of recurrent ovarian cancer that's expected to take place in the fourth year of THOR’s multi-year project.

“The technology is broadly applicable for peritoneal cancers that affect the pancreas, liver, lungs and other organs,” Veiseh says. “The first clinical trial will focus on refractory recurrent ovarian cancer, and the benefit of that is that we have an ongoing trial for ovarian cancer with our encapsulated cytokine ‘drug factory’ technology. We'll be able to build on that experience. We have already demonstrated a unique model to go from concept to clinical trial within five years, and HAMMR is the next iteration of that approach.”

Trending News

 
 

Promoted