This week's roundup of Houston innovators includes Matthew Costello of Voyager, Arielle Rogg, and Nathan Childress of Solar Slice. Photos courtesy

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes a logistics startup founder, a marketing expert, and a solar energy innovator.

Matthew Costello, CEO and co-founder of Voyager Portal

Houston logistics SaaS innovator is making waves with its expanded maritime shipping platform. Photo courtesy of Voyager

For several years now, Matthew Costello has been navigating the maritime shipping industry looking for problems to solve for customers with his company, Voyager Portal.

Initially, that meant designing a software platform to enhance communications and organization of the many massive and intricate global shipments happening every day. Founded in 2018 by Costello and COO Bret Smart, Voyager Portal became a integral tool for the industry that helps users manage the full lifecycle of their voyages — from planning to delivery.

"The software landscape has changed tremendously in the maritime space. Back in 2018, we were one of a small handful of technology startups in this space," Costello, who serves as CEO of Voyager, says on the Houston Innovators Podcast. "Now that's changed. ... There's really a huge wave of innovation happening in maritime right now." Read more.

Arielle Rogg, principal and founder of Rogg Enterprises

Arielle Rogg writes in a guest column for InnovationMap about AI in the workforce. Photo via LinkedIn

Arielle Rogg isn't worried about artificial intelligence coming for her job. In fact, she has three reasons why, and she outlines them in a guest column for InnovationMap.

"The advent of AI pushes us humans to acquire new skills and hone our existing abilities so we can work alongside these evolving technologies in a collaborative fashion. AI augments human capabilities rather than replacing us. I believe it will help our society embrace lifelong learning, creating new industries and jobs that have never existed before," she writes in the piece. Read more.

Nathan Childress, founder of Solar Slice

Solar Slice Founder Nathan Childress says his new venture offers a fulfilling way to encourage and promote solar energy and a greener planet. Photo via LinkedIn

Nuclear engineer and entrepreneur Nathan Childress wants consumers to capture their own ray of sunlight to brighten the prospect of making clean energy a bigger part of the power grid. That's why he founded Solar Slice. The new venture offers a fulfilling way to encourage and promote solar energy and a greener planet.

Although trained in nuclear power plant design, solar power drew his interest as a cheaper and more accessible alternative, and Childress tells InnovationMap that he thinks that the transition to cleaner energy, in Texas especially, needs to step up.

Recent studies show that 80 to 90 percent of the money invested into fighting climate change “aren’t going to things that people actually consider helpful,” Childress says, adding that “they’re more just projects that sound good, that are not actually taking any action." Read more.

Solar Slice Founder Nathan Childress says his new venture offers a fulfilling way to encourage and promote solar energy and a greener planet. Photo via Getty Images

Houston entrepreneur launches new venture to shine light on sustainability

energy transition

A Houston nuclear engineer and entrepreneur wants consumers to capture their own ray of sunlight to brighten the prospect of making clean energy a bigger part of the power grid.

Solar Slice Founder Nathan Childress says his new venture offers a fulfilling way to encourage and promote solar energy and a greener planet. An experienced entrepreneur, Childress also serves as founder and CEO of technology software company Macorva.

Although trained in nuclear power plant design, solar power drew his interest as a cheaper and more accessible alternative, and Childress tells InnovationMap that he thinks that the transition to cleaner energy, in Texas especially, needs to step up.

With energy demand skyrocketing, and the push toward renewable solutions, solar seems like a safe bet for Childress, a former competitive high-stakes poker player. Childress cites a recent Yale University study that says 63 percent of Americans “feel a personal responsibility to help reduce global warming.”

But some studies show that 80 to 90 percent of the money invested into fighting climate change “aren’t going to things that people actually consider helpful,” he says.

“They’re more just projects that sound good, that are not actually taking any action,” says Childress, who has called Houston home for 25 years. He received his doctorate in medical physics at M.D. Anderson Cancer Center, where he worked on software that provided radiation therapy for patients.

The initial Kickstarter fundraising round, which will be launched soon, will finance the construction of one utility-scale solar farm, on about five to 10 acres, which would produce about 1 megawatt, or 1,000 kilowatts, of clean energy. The plant would make enough energy to power about 200 average homes.

Childress says interest has been strong, with several thousand signed up on the Kickstarter launch list. Some who are signed up expressed interest in a subscription, he said, and that may be offered later. Initially, though, for a one-time purchase of $95, a Solar Slice client can purchase one virtual 50W slice of solar power, produced by the farm. Over its lifetime, Childress says, that one purchase can offset three tons of carbon dioxide.

The app tracks carbon offsetting, and energy production for the slice, showing a client “exactly how much I have helped the climate, here’s exactly how (many) emissions I have prevented from putting in the atmosphere,” he says.

The energy produced by five slices can offset the average American’s carbon footprint for a year, and the power generated by the solar farm will be sold to the electric grid. As clients purchase more slices, they can earn eco-credits to donate to other climate-friendly partners, to plant trees or create pollinator habitats.

While Solar Slice is a for-profit venture, contributors won’t get rich or even make money from their purchase. Rather, it provides validation.

“Our focus is maximizing the real world impact, not for financial gain. This is not something people sign up (for) to make money. We’re really clear about that,” Childress says. “I want to show that it’s possible to have a for-profit company that is sustainable, that does good work.

“And hopefully, we can be part of the spirit…for a bigger movement, and for consumers and business, especially, to do things that matter.”


Solar Slice Founder Nathan Childress says his new venture offers a fulfilling way to encourage and promote solar energy and a greener planet. Photo courtesy

The largest U.S. solar plants are in Nevada and California, and those states are sites under consideration, but Childress says Texas is the most likely home for the initial project. The ten largest utility-scale solar plants in Texas by capacity are all in far west or central parts of the state, according to the state comptroller’s office.

Childress has a team of four, who are handling the marketing, plant design and site scouting, and hopes to hire five to 10 more, depending on response and growth. He says the Solar Slice consumer can directly connect in real time to the contribution that their purchase will make toward a green energy future.

“That was our inspiration..let’s start something that is really making a difference..and making really clear to the individuals what’s being done,” he says.

Solar energy has become a growing source of power for Texas, comprising about 6 percent of the state’s energy generation, as of 2022, the comptroller’s office says.

The state ranks first in projected growth of solar energy over the next five years, with more than 9,500 operating solar plants, and many thousands more announced, according to the state Public Utility Commission.

“We would absolutely love to make this into something where we are building plants around the nation, around the world,” Childress he says.

However, resistance to alternative energy projects like solar and wind, especially on a large scale, remains in some quarters.

Obtaining site permits for swaths of land can be also a challenge. For example, a recent survey by Berkeley Lab of 123 professionals from 62 unique, large-scale wind and solar energy facilities showed that about one-third of wind and solar siting applications in the past five years were canceled.

Half of the projects experienced delays of six months or longer. And according to the survey, developers expect the trend to continue, and become more expensive to address.

However, another Berkeley Lab survey of residents who live within three miles of a solar power plant showed that most view the plant positively. The larger the plant, the more negative the response in the survey. The smaller the farm, the more positive the reactions.

Childress says many of the common objections to utility-scale solar farms are misguided, and incorrect. For example, the concern that they would take over available farmland or take up too much space.

He says that even if the entire U.S. power grid relied solely on solar power, the plants would occupy not even a half percent of available land, which is about one percent farmland.

------

This article originally ran on EnergyCapital.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice team keeps CO2-to-fuel devices running 50 times longer in new study

Bubbling Up

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also recently shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston foundation grants $27M to support Texas chemistry research

fresh funding

Houston-based The Welch Foundation has doled out $27 million in its latest round of grants for chemical research, equipment and postdoctoral fellowships.

According to a June announcement, $25.5 million was allocated for the foundation's longstanding research grants, which provide $100,000 per year in funding for three years to full-time, regular tenure or tenure-track faculty members in Texas. The foundation made 85 grants to faculty at 16 Texas institutions for 2025, including:

  • Michael I. Jacobs, assistant professor in the chemistry and biochemistry department at Texas State University, who is investigating the structure and thermodynamics of intrinsically disordered proteins, which could "reveal clues about how life began," according to the foundation.
  • Kendra K. Frederick, assistant professor in the biophysics department at The University of Texas Southwestern Medical Center, who is studying a protein linked to Parkinson’s disease.
  • Jennifer S. Brodbelt, professor in chemistry at The University of Texas at Austin, who is testing a theory called full replica symmetry breaking (fullRSB) on glass-like materials, which has implications for complex systems in physics, chemistry and biology.

Additional funding will be allocated to the Welch Postdoctoral Fellows of the Life Sciences Research Foundation. The program provides three-year fellowships to recent PhD graduates to support clinical research careers in Texas. Two fellows from Rice University and Baylor University will receive $100,000 annually for three years.

The Welch Foundation also issued $975,000 through its equipment grant program to 13 institutions to help them develop "richer laboratory experience(s)." The universities matched funds of $352,346.

Since 1954, the Welch Foundation has contributed over $1.1 billion for Texas-nurtured advancements in chemistry through research grants, endowed chairs and other chemistry-related ventures. Last year, the foundation granted more than $40.5 million in academic research grants, equipment grants and fellowships.

“Through funding basic chemical research, we are actively investing in the future of humankind,” Adam Kuspa, president of The Welch Foundation, said the news release. “We are proud to support so many talented researchers across Texas and continue to be inspired by the important work they complete every day.”

New Houston biotech co. developing capsules for hard-to-treat tumors

biotech breakthroughs

Houston company Sentinel BioTherapeutics has made promising headway in cancer immunotherapy for patients who don’t respond positively to more traditional treatments. New biotech venture creation studio RBL LLC (pronounced “rebel”) recently debuted the company at the 2025 American Society of Clinical Oncology (ASCO) Annual Meeting in Chicago.

Rima Chakrabarti is a neurologist by training. Though she says she’s “passionate about treating the brain,” her greatest fervor currently lies in leading Sentinel as its CEO. Sentinel is RBL’s first clinical venture, and Chakrabarti also serves as cofounder and managing partner of the venture studio.

The team sees an opportunity to use cytokine interleukin-2 (IL-2) capsules to fight many solid tumors for which immunotherapy hasn't been effective in the past. “We plan to develop a pipeline of drugs that way,” Chakrabarti says.

This may all sound brand-new, but Sentinel’s research goes back years to the work of Omid Veiseh, director of the Rice Biotechnology Launch Pad (RBLP). Through another, now-defunct company called Avenge Bio, Veiseh and Paul Wotton — also with RBLP and now RBL’s CEO and chairman of Sentinel — invested close to $45 million in capital toward their promising discovery.

From preclinical data on studies in mice, Avenge was able to manufacture its platform focused on ovarian cancer treatments and test it on 14 human patients. “That's essentially opened the door to understanding the clinical efficacy of this drug as well as it's brought this to the attention of the FDA, such that now we're able to continue that conversation,” says Chakrabarti. She emphasizes the point that Avenge’s demise was not due to the science, but to the company's unsuccessful outsourcing to a Massachusetts management team.

“They hadn't analyzed a lot of the data that we got access to upon the acquisition,” explains Chakrabarti. “When we analyzed the data, we saw this dose-dependent immune activation, very specific upregulation of checkpoints on T cells. We came to understand how effective this agent could be as an immune priming agent in a way that Avenge Bio hadn't been developing this drug.”

Chakrabarti says that Sentinel’s phase II trials are coming soon. They’ll continue their previous work with ovarian cancer, but Chakrabarti says that she also believes that the IL-2 capsules will be effective in the treatment of endometrial cancer. There’s also potential for people with other cancers located in the peritoneal cavity, such as colorectal cancer, gastrointestinal cancer and even primary peritoneal carcinomatosis.

“We're delivering these capsules into the peritoneal cavity and seeing both the safety as well as the immune activation,” Chakrabarti says. “We're seeing that up-regulation of the checkpoint that I mentioned. We're seeing a strong safety signal. This drug was very well-tolerated by patients where IL-2 has always had a challenge in being a well-tolerated drug.”

When phase II will take place is up to the success of Sentinel’s fundraising push. What we do know is that it will be led by Amir Jazaeri at MD Anderson Cancer Center. Part of the goal this summer is also to create an automated cell manufacturing process and prove that Sentinel can store its product long-term.

“This isn’t just another cell therapy,” Chakrabarti says.

"Sentinel's cytokine factory platform is the breakthrough technology that we believe has the potential to define the next era of cancer treatment," adds Wotton.