This week's innovators to know includes Kenneth Liao of Baylor St. Luke's, Serafina Lalany of Houston Exponential, and Nick Cardwell of McCord. Photos courtesy

Editor's note: In today's Monday roundup of Houston innovators, I'm introducing you to three innovators across industries — from robotics in health care to smart city technology — all making headlines in Houston this week.

Kenneth Liao, chief of cardiothoracic transplantation and mechanical circulatory support at Baylor St. Luke's Medical Center,

Houston cardiac surgeon outpaces much of the country in game-changing robotics

Dr. Kenneth Liao, chief of cardiothoracic transplantation and mechanical circulatory support at Baylor St. Luke's Medical Center, is one of around 50 surgeons in the country considered experts of this new surgery robotics tool. Photo courtesy of Baylor St. Luke's

Dr. Kenneth Liao is the only cardiatric surgeon in Houston — and one of only around 50 in the world — who uses a specific robot to conduct heart surgeries. The robot, known as the da Vinci, was first designed to assist in battlefield procedures.

Now on its fourth generation, the robot allows surgeons like Liao to treat heart diseases and conditions that typically would require open heart surgery through a one-to-two inch incision near the ribs. In many surgeries, it also allows surgeons to keep a patient's heart beating, lowering the risk of stroke.

"It's a totally game changing component to conventional surgery," Liao says. Read more.

Serafina Lalany, chief of staff at Houston Exponential 

Serafina Lalany joins the Houston Innovators Podcast to discuss the Listies. Photo courtesy of Serafina Lalany

Houston tech companies deserve a shoutout, and, after mulling it over for quite a while, Serafina Lalany and her team at Houston Exponential are making it happen with The Listies, a new awards program.

"The idea for The Listies has been in the back of our minds for a long time," says Lalany, chief of staff at HX, on this week's episode of the Houston Innovators Podcast. "There has always been a need in the ecosystem to celebrate the wins and vibrant culture we have here. This is an opportunity to pay homage to that."

The nomination deadline has been extended for the awards. Nominate a worthy startup, person, investor or corporate by Friday, November 6. Click here to submit. And, click here to stream the episode and read more.

Nick Cardwell, vice president of digital innovation at McCord

A new executive hire for McCord is going to focus on bringing smart city technology to Generation Park. Rendering courtesy of McCord

At 4,200 acres, the Generation Park master-planned development is evolving into its own ecosystem of sorts — one that has a huge opportunity for tech and smart city initiatives. Houston-based real estate developer, McCord, has hired Nick Cardwell as vice president of digital innovation. In the newly created role, Cardwell will be tasked with bringing data-driven solutions, digital transformation, and other smart city innovation to Generation Park.

"McCord's vision for Generation Park is the future of commercial development, pushing digital innovation into the forefront and leveraging cutting-edge technologies throughout their portfolio. I am beyond thrilled to join the McCord team and help make that vision a reality," says Cardwell, in the release. "Through the use of experiences, data, and collaborations, we will accelerate learnings and, in turn, advance resources that will truly improve people's lives." Read more.

Dr. Kenneth Liao, chief of cardiothoracic transplantation and mechanical circulatory support at Baylor St. Luke's Medical Center, is one of around 50 surgeons in the country considered experts of this new surgery robotics tool. Photo courtesy of Baylor St. Luke's

Houston cardiac surgeon outpaces much of the country in game-changing robotics

matters of the heart

Dr. Kenneth Liao is pioneering a less invasive form of heart surgery at a time when distanced medicine has become more important than ever with the help of six team members and one robot.

As the chief of cardiothoracic transplantation and mechanical circulatory support at Baylor St. Luke's Medical Center, Liao has performed 116 robotic cardiac surgeries since coming on board in 2019 (as of press time). With Liao at the helm, Baylor St. Luke's has become a top cardiac robotics program in the country and is the only hospital in Houston to practice this highly-specialized form of surgery.

Liao's four-armed robot friend is known as the da Vinci robotic system and was first designed to assist in battlefield procedures. Now on its fourth generation, the robot allows surgeons like Liao to treat heart diseases and conditions that typically would require open heart surgery through a one-to-two inch incision near the ribs. In many surgeries, it also allows surgeons to keep a patient's heart beating, lowering the risk of stroke.

"It's a totally game changing component to conventional surgery," Liao says, who's one of about 50 surgeons in the country with his level of command over the tool.

Once inside, the da Vinci robot uses tiny instruments to perform surgical practices from suturing to cutting to tying a knot all within the rigid chest cage, which in a typical open heart surgery would have to be broken to perform such tasks.

The surgeon, who's seated about 10 feet away from the patient, controls the tools through a joystick connected to a computer console that shows an enhanced 3D view of the patient's chest. Liao says the screen provides a better visual of the heart than if he was seeing it with his own eyes, as it magnifies the field of surgery tenfold. This method also gives surgeons a better view of areas of the heart that they cannot easily see from above during traditional procedures.

The da Vinci can be used for bypass, grafting, pacemaker, and valve repair surgeries, and it has been proven to result in less blood loss and a faster, less painful recovery. Similar technology has also been adopted for prostate and gynecological surgeries. "It gives you the advantage of minimizing the trauma," Liao says.

And though the da Vinci was developed years before the pandemic, it puts patients at a lower risk of exposure to any outside contaminants, Liao adds, as the robot alone is interfacing with the patient through a small port, compared to doctors, nurses, and assistants hovering over an open chest cavity.

"Technology will theoretically reduce a patient's exposure to COVID in the operation room," he says. "I think that's common sense."

Liao was an early adopter of robotics, when the technology was much less user friendly. He performed the first robotic heart surgery in the state of Minnesota in 2003 and has worked with the developers of the da Vinci ever since to help improve the product after many other surgeons dismissed it.

He says today there is a renewed interest in the highly technical process and he believes it will become an emphasis for younger surgeons.

"This generation of surgeons are young and they are very indebted to computer technology and games. For them looking at screens and controlling the hand joystick control is much more familiar than for the older generation that was trained 20 years ago." he says.

The incredible technology helps, too. "A lot of times, as surgeons, we train in the old way. It's very difficult to change the systems," he says. "You need a major technology revolution to change the teaching and training."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.

Luxury transportation startup connects Houston with Austin and San Antonio

On The Road Again

Houston business and leisure travelers have a luxe new way to hop between Texas cities. Transportation startup Shutto has launched luxury van service connecting San Antonio, Austin, and Houston, offering travelers a comfortable alternative to flying or long-haul rideshare.

Bookings are now available Monday through Saturday with departure times in the morning and evening. One-way fares range from $47-$87, putting Shutto in a similar lane to Dallas-based Vonlane, which also offers routes from Houston to Austin and San Antonio.

Shutto enters the market at a time when highway congestion is a hotter topic than ever. With high-speed rail still years in the future, its model aims to provide fast, predictable service at commuter prices.

The startup touts an on-time departure guarantee and a relaxed, intimate ride. Only 12 passengers fit inside each Mercedes Sprinter van, equipped with Wi-Fi and leather seating. And each route includes a pit stop at roadside favorite Buc-ee's.

In announcing the launch, founder and CEO Alberto Salcedo called the company a new category in Texas mobility.

“We are bringing true disruptive mobility to Texas: faster and more convenient than flying (no security lines, no delays), more comfortable and exclusive than the bus or train, and up to 70 percent cheaper than private transfers or Uber Black,” Salcedo said in a release.

“Whether you’re commuting for business, visiting family, exploring Texas wineries, or doing a taco tour in San Antonio, Shutto makes traveling between these cities as easy and affordable as riding inside the city."

Beyond the scheduled routes, Shutto offers private, customizable trips anywhere in the country, a service it expects will appeal to corporate retreat planners, party planners, and tourists alike.

In Houston, the service picks up and drops off near the Galleria at the Foam Coffee & Kitchen parking lot, 5819 Richmond Ave.. In San Antonio, it is located at La Panadería Bakery’s parking lot at 8305 Broadway. In Austin, the location is the Pershing East Café parking lot at 2501 E. Fifth St.

---

This article originally appeared on CultureMap.com.

Houston-area lab grows with focus on mobile diagnostics and predictive medicine

mobile medicine

When it comes to healthcare, access can be a matter of life and death. And for patients in skilled nursing facilities, assisted living or even their own homes, the ability to get timely diagnostic testing is not just a convenience, it’s a necessity.

That’s the problem Principle Health Systems (PHS) set out to solve.

Founded in 2016 in Clear Lake, Texas, PHS began as a conventional laboratory but quickly pivoted to mobile diagnostics, offering everything from core blood work and genetic testing to advanced imaging like ultrasounds, echocardiograms, and X-rays.

“We were approached by a group in a local skilled nursing facility to provide services, and we determined pretty quickly there was a massive need in this area,” says James Dieter, founder, chairman and CEO of PHS. “Turnaround time is imperative. These facilities have an incredibly sick population, and of course, they lack mobility to get the care that they need.”

What makes PHS unique is not only what they do, but where they do it. While they operate one of the largest labs serving skilled nursing facilities in the state, their mobile teams go wherever patients are, whether that’s a nursing home, a private residence or even a correctional facility.

Diagnostics, Dieter says, are at the heart of medical decision-making.

“Seventy to 80 percent of all medical decisions are made from diagnostic results in lab and imaging,” he says. “The diagnostic drives the doctor’s or the provider’s next move. When we recognized a massive slowdown in lab results, we had to innovate to do it faster.”

Innovation at PHS isn’t just about speed; it’s about accessibility and precision.

Chris Light, COO, explains: “For stat testing, we use bedside point-of-care instruments. Our phlebotomists take those into the facilities, test at the bedside, and get results within minutes, rather than waiting days for results to come back from a core lab.”

Scaling a mobile operation across multiple states isn’t simple, but PHS has expanded into nine states, including Texas, Oklahoma, Kansas, Missouri and Arizona. Their model relies on licensed mobile phlebotomists, X-ray technologists and sonographers, all trained to provide high-level care outside traditional hospital settings.

The financial impact for patients is significant. Instead of ambulance rides and ER visits costing thousands, PHS services often cost just a fraction, sometimes only tens or hundreds of dollars.

“Traditionally, without mobile diagnostics, the patient would be loaded into a transportation vehicle, typically an ambulance, and taken to a hospital,” Dieter says. “Our approach is a fraction of the cost but brings care directly to the patients.”

The company has also embraced predictive and personalized medicine, offering genetic tests that guide medication decisions and laboratory tests that predict cognitive decline from conditions like Alzheimer's and Parkinson’s.

“We actively look for complementary services to improve patient outcomes,” Dieter says. “Precision medicine and predictive testing have been a great value-add for our providers.”

Looking to the future, PHS sees mobile healthcare as part of a larger trend toward home-based care.

“There’s an aging population that still lives at home with caretakers,” Dieter explains. “We go into the home every day, whether it’s an apartment, a standalone home, or assisted living. The goal is to meet patients where they are and reduce the need for hospitalization.”

Light highlighted another layer of innovation: predictive guidance.

“We host a lot of data, and labs and imaging drive most treatment decisions,” Light says. “We’re exploring how to deploy diagnostics immediately based on results, eliminating hours of delay and keeping patients healthier longer.”

Ultimately, innovation at PHS isn’t just about technology; it’s about equity.

“There’s an 11-year life expectancy gap between major metro areas and rural Texas,” Dieter says. “Our innovation has been leveling the field, so everyone has access to high-quality diagnostics and care, regardless of where they live.”