This week's roundup of Houston innovators includes Steffie Tomson of Getaway Sticks ad Ed Pettitt and Paresh Patel of InnoGrid. Courtesy photos

Editor's note: In this week's roundup of Houston innovators to know, I'm introducing you to three local innovators across industries — from innovative merchandise to microgrid technology — recently making headlines in Houston innovation.

Steffie Tomson, founder of Getaway Sticks

Steffie Tomson founded a company to prioritize comfort — without sacrificing style — for women on the go. Photo via getawaysticks.com

Houstonian Steffie Tomson, a neuroscientist by trade and the founder and CEO of footwear startup Getaway Sticks, had an idea for a different kind of shoe — one that was redesigned to prioritize women’s comfort.

“I thought, ‘why can’t we start with a sneaker material and then build a heel around it?’” she tells InnovationMap. “I started just slicing everyone else’s shoes and now I’m more convinced than ever that our shoe is different.”

Tomson was inspired to design the inaugural shoe for Getaway Sticks after her own struggle with heels, walking in the bustling Texas Medical Center from building to building for meetings. As a mom of two and a problem solver, she knew there had to be a better mousetrap. Click here to read more.

Ed Pettitt and Paresh Patel join the Houston Innovators Podcast to discuss InnoGrid's potential impact on equitable power. Photos courtesy of InnoGrid

With an unstable energy grid, two Houstonians know at least one solution in the evolving energy industry: Microgrids.

Ed Pettitt and Paresh Patel co-founded InnoGrid, a social enterprise working to establish community microgrids in lower income areas — neighborhoods that are most at risk of devastating power outages.

"We want to convert the commercial microgrid model for low and moderate income and undresourced residential communities," Patel explains on the latest episode of the Houston Innovators Podcast. Click here to read more and stream the episode.


Ed Pettitt and Paresh Patel join the Houston Innovators Podcast to discuss InnoGrid's potential impact on equitable power. Photos courtesy of InnoGrid

Houston founders aim to provide equity through energy resiliency

Houston innovators podcast episode 143

As temperatures climb and devastating natural disasters continue to test the power grid, two Houston innovators have a solution: Smart microgrids.

"Microgrids have been around for a very long time," Paresh Patel, co-founder of InnoGrid, says on the Houston Innovators Podcast. "We're primed here in Houston and in Texas to really see microgrids go mainstream. ... People want to see that they have control and are in charge of their own power."

Patel co-founded InnoGrid with Ed Pettitt and a few other collaborators following the 2020 Houston Climathon. The social enterprise is working to establish community microgrids in lower income areas — neighborhoods that are most at risk of devastating power outages.

"We want to convert the commercial microgrid model for low and moderate income and undresourced residential communities," Patel explains.

And there's never been a better time to shine a spotlight on microgrids as a solution to unreliable power systems, Pettitt says.

"We're dealing with massive inflation — costs are going up especially in food and energy," he explains on the show. "Even prior to this time of inflation, electricity prices in the US were expected to increase across the board. Hundreds of thousands of people right now today are being pushed below the poverty line because of increased energy costs. We need to be more creative in how we upgrade our infrastructure."

And the current grid system is well overdue for an upgrade. The microgrid system fits right in with the shared economy we live in today, Patel says, and it allows for more generation of energy that is decentralized, digitalized, decarbonized, and democratized — the four Ds as he says.

"When you consider our current grid system, it is a vestige of the industrial revolution — it's 140 years old. That business model is ripe for innovation," Patel says.

"We need to accelerate deployment of microgrid models," he continues. "I don't think we can afford to update our current grid system — it'll cost $2 trillion."

Most importantly, these microgrids need to be implemented in an equitable way, the founders say, and InnoGrid has its eyes on one Houston area in particular. The Innovation Corridor, which spans from the Texas Medical Center to Downtown Houston, would be the ideal region to deploy the technology.

"If you look at the innovation corridor, it forms the spine of the city. You have so many important municipal buildings, first-responding organizations, and a large amount of affordable housing in the area. There's critical resources here that we want to make sure the lights stay on in power disasters," Pettit says. "One of the things we believe at InnoGrid is that where you live shouldn't determine whether or not you survive a national weather event. We want to make sure we provide energy stability in the communities that need it most."

To make this dream into a reality, InnoGrid needs the right partnerships and support in the area — and the founders have made progress. InnoGrid recently participated in the Ion Smart and Resilient Cities Accelerator and has a relationship with Greentown Houston across the street.

Eventually, as Pettit says, InnoGrid wants to help lead Houston to becoming a hub for microgrid innovation.

"We're looking at other cities — like Chicago and Boston — and how they've deployed their microgrids and making sure we're bringing those best practices in Houston," Pettit says. "Eventually we want to be the leader in developing these microgrid best practices as the energy capital of the world."

Patel and Pettitt share more about InnoGrid and microgrid technology on the podcast. Listen to the interview below — or wherever you stream your podcasts — and subscribe for weekly episodes.


One of the winning teams at Climathon has an idea for a microgrid system in Houston's emerging innovation corridor. Photo via houston.org

Houston Climathon winning microgrid solution is more important now than ever

thinking small

More than 6,000 participants in 145 cities around the world gathered virtually for last year's Climathon, a global event put on by Impact Hub Houston to unite innovators and collaborate on climate solutions. When Winter Storm Uri left the Texas energy grid in a state of crisis, one Climathon Houston team's proposal for energy reliability became all the more important.

Last year, the City of Houston unveiled its first Climate Action Plan to address the city's challenges and strive to lead the energy transition. It was the perfect roadmap for Climathon Houston, a hackathon where eleven teams gathered to develop and pitch a concept to align with the city's new plan.

Of the three winning teams, one idea was prescient in its approach to energy. Six energy-focused Texans drew up plans for InnoGrid, a cost-effective strategy to build the first microgrid in Houston. What started as a pitch has become a developed proposal gaining collaborator and city interest in the wake of Uri.

Bryan Gottfried, Edward D. Pettitt II, Andi Littlejohn, Paresh Patel, Ben Jawdat, and Gavin Dillingham created InnoGrid to to help achieve the CAP's energy transition and net-zero emissions goals. With climate events increasing rapidly, the team of innovators saw an opportunity to create a sustainable solution — the first Houston microgrid.

In just an hour and a half of brainstorming, the team sought to create a similar model to Austin's Whisper Valley microgrid — a project that's currently in development. While Whisper Valley is a master plan community, the team wanted to create a microgrid to support a larger picture: the city of Houston.

"I had been following transactive energy models [such as] peer-to-peer electricity trading like Brooklyn Microgrid/LO3 Energy and Power Ledger since their inception. This inspired my vision for a novel microgrid that would demonstrate such technologies in the energy capital of the world that is otherwise primarily focused on oil and gas, and natural resources," explains Patel, founder and CEO of e^2: Equitable Energy.

When Pettitt joined the group, he proposed the growing Houston Innovation Corridor as the home to InnoGrid. The four-mile stretch between the Texas Medical Center and Downtown is already home to green technology, making it an ideal fit.

"You're going into an area that was already being redeveloped and had this innovation kind of mentality already," explains Gottfried, a geoscientist and current MBA student at University of Houston Bauer College of Business.

After winning Climathon Houston, the team continued to meet weekly in hopes of making InnoGrid a reality.

The case for a microgrid

The InnoGrid team started with the goal of making energy reliable and resilient in the face of climate change. While previous storms like Hurricane Ike have left millions of Texans without power, Winter Storm Uri was one of the most destructive tragedies to face Texas. The unexpected February storm left 4.5 million Texans without electricity and resulted in at least 111 deaths.

As InnoGrid's team members struggled with burst pipes and loss of power, the team juggled the task of submitting a grant application to the Department of Energy during a catastrophic winter storm. The timing was not lost on them.

"It underscored the need for us to do something like this," shares Gottfried.

To understand how impactful a Houston microgrid can be, you first must understand how a microgrid works. A microgrid is a local energy grid made of a network of generators combined with energy storage. The microgrid has control capability, meaning it can disconnect from a macro grid and run autonomously.

Ultimately, microgrids can provide reliability and drive down carbon emissions. Using smart meters, the grids can even provide real-time energy data to show the inflow and outflow of electricity. In the instance a microgrid does go down, it only affects the community — not the entire state. Likewise, during a power outage to the main grid, a microgrid can break away and run on its own.

Microgrids have been deployed by other cities to mitigate the physical and economic risks caused by power outages, but the use of a project like InnoGrid feels especially timely given recent events and the limitations of the Texas Interconnect.

The Texas grid is isolated by choice, separated from the eastern and western interconnects. Texas' isolated energy grid resulted in a massive failure, proving deregulation can certainly backfire. Updating the electric grid has an expensive price tag, but microgrids show a promising and cost-effective model for the future.

"I thought if microgrids and mini-grids are enabling millions in off-grid frontier markets at the base of the pyramid [like Asia, Sub-Saharan Africa, etc.] to essentially leapfrog legacy energy infrastructure, why should we not upgrade our aging power system with the latest tech that is digitalized, decarbonized, decentralized/distributed, and democratized at the top of the pyramid," asks Patel.

Many hospitals, universities, and large technology firms have already established their own microgrids to protect equipment and provide safety. Still, smaller businesses and homes in the community can suffer during outages.

InnoGrid's proposal seeks to use existing and proven renewable energy sources like wind, solar and geothermal energy. The storage technologies used would include battery, kinetic, compressed air, and geomechanical pumped storage.

"From the perspective of an early-stage hardware startup, one of the most important things is finding a way to validate and test your technology," explains Jawdat, founder and CEO of Revterra and adviser to the InnoGrid team. He explains that the microgrid "can also be a testbed for new technologies, specifically, new energy storage technologies," through potential partnerships with companies like Greentown Labs, which is opening its Houston location soon.

Battling inequity 

While the outlook for a community microgrid is enticing, there are also challenges to address. One key challenge is inequity, which is a key focus of Pettitt who was drawn to the team's goal of providing stability for companies and residences in Houston.

Pettitt, who is seeking a Ph.D. in urban planning and environmental policy at Texas Southern University, has a background in public health and frequently works with the Houston Coalition for Equitable Development without Displacement. "I'm really looking at the intersection of the built environment and how to make cities healthier for its residents," he shares.

"A lot of companies are trying to prevent this climate crisis where we have climate refugees that can't live in certain areas because of ecological damage. But in the process, we don't want to create economic refugees from the gentrification of bringing all of these companies and higher-wage jobs into an area without providing folks the ability to benefit from those jobs and the positive externalities of that development," explains Pettitt.

The InnoGrid would plan to provide positive externalities in the form of energy subsidies and potentially even job training for people who want to work on the grid.

Power to the consumer

Much like the gamification in feel-good fitness trackers and e-learning tools, reward systems can inspire friendly competition and community engagement. InnoGrid's proposal seeks to challenge other major cities to build their own grids and compete with a gamified system.

The Innovation Corridor is currently undergoing major redevelopment, the first 16 acres of which are being developed by Rice Management Company and will be anchored by The Ion, which is opening soon. The timing of this redevelopment would allow a prospective project like InnoGrid to build in visual and interactive aspects that depict energy usage and carbon offsetting.

The microgrid's statistics would also engage Houstonians by sharing up-to-date data through dashboards, apps, and even billboards to track Houston's carbon footprint. Pettitt paints a picture of interactive sidewalk structures, leaderboards, and digital billboards in the public realm to showcase how energy is used day-to-day. The team hopes to build positive feedback cycles that encourage tenants and building owners to be more energy-efficient.

"If we're having an Innovation Corridor, an innovation district, I think the built environment should be innovative too," explains Pettitt.

The future of InnoGrid

Every innovation has to start somewhere. While InnoGrid is in its early stages, the team is working to establish partners and collaborators to make the project a reality.

Inspired by projects like the Brooklyn Microgrid, InnoGrid is in the process of pursuing partnerships with utilities and energy retailers to form a dynamic energy marketplace that pools local distributed energy resources. The team hopes to collaborate with microgrid experts from around the nation like Schneider Electric and SunPower. Other potential collaborators include The Ion, CenterPoint, Greentown Labs, and Rice Management Company.

Can Houston remain the energy capital of the world as it transitions to a net-zero energy future? The InnoGrid team wants to make that happen. The argument for a microgrid in Houston feels even more fitting when you look at the landscape.

"If we are going to create an innovative microgrid that also functions as a testbed for innovators and startups, [we] have proximity to some of the biggest utilities and power generation players right in that sector," explains Patel, who is also an inaugural member of Greentown Labs Houston.

"The microgrid itself is not novel. I think what makes it compelling is to situate that right here in the heart of the energy capital as we, again, reincarnate as the energy transition capital world," Patel continues.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-area lab grows with focus on mobile diagnostics and predictive medicine

mobile medicine

When it comes to healthcare, access can be a matter of life and death. And for patients in skilled nursing facilities, assisted living or even their own homes, the ability to get timely diagnostic testing is not just a convenience, it’s a necessity.

That’s the problem Principle Health Systems (PHS) set out to solve.

Founded in 2016 in Clear Lake, Texas, PHS began as a conventional laboratory but quickly pivoted to mobile diagnostics, offering everything from core blood work and genetic testing to advanced imaging like ultrasounds, echocardiograms, and X-rays.

“We were approached by a group in a local skilled nursing facility to provide services, and we determined pretty quickly there was a massive need in this area,” says James Dieter, founder, chairman and CEO of PHS. “Turnaround time is imperative. These facilities have an incredibly sick population, and of course, they lack mobility to get the care that they need.”

What makes PHS unique is not only what they do, but where they do it. While they operate one of the largest labs serving skilled nursing facilities in the state, their mobile teams go wherever patients are, whether that’s a nursing home, a private residence or even a correctional facility.

Diagnostics, Dieter says, are at the heart of medical decision-making.

“Seventy to 80 percent of all medical decisions are made from diagnostic results in lab and imaging,” he says. “The diagnostic drives the doctor’s or the provider’s next move. When we recognized a massive slowdown in lab results, we had to innovate to do it faster.”

Innovation at PHS isn’t just about speed; it’s about accessibility and precision.

Chris Light, COO, explains: “For stat testing, we use bedside point-of-care instruments. Our phlebotomists take those into the facilities, test at the bedside, and get results within minutes, rather than waiting days for results to come back from a core lab.”

Scaling a mobile operation across multiple states isn’t simple, but PHS has expanded into nine states, including Texas, Oklahoma, Kansas, Missouri and Arizona. Their model relies on licensed mobile phlebotomists, X-ray technologists and sonographers, all trained to provide high-level care outside traditional hospital settings.

The financial impact for patients is significant. Instead of ambulance rides and ER visits costing thousands, PHS services often cost just a fraction, sometimes only tens or hundreds of dollars.

“Traditionally, without mobile diagnostics, the patient would be loaded into a transportation vehicle, typically an ambulance, and taken to a hospital,” Dieter says. “Our approach is a fraction of the cost but brings care directly to the patients.”

The company has also embraced predictive and personalized medicine, offering genetic tests that guide medication decisions and laboratory tests that predict cognitive decline from conditions like Alzheimer's and Parkinson’s.

“We actively look for complementary services to improve patient outcomes,” Dieter says. “Precision medicine and predictive testing have been a great value-add for our providers.”

Looking to the future, PHS sees mobile healthcare as part of a larger trend toward home-based care.

“There’s an aging population that still lives at home with caretakers,” Dieter explains. “We go into the home every day, whether it’s an apartment, a standalone home, or assisted living. The goal is to meet patients where they are and reduce the need for hospitalization.”

Light highlighted another layer of innovation: predictive guidance.

“We host a lot of data, and labs and imaging drive most treatment decisions,” Light says. “We’re exploring how to deploy diagnostics immediately based on results, eliminating hours of delay and keeping patients healthier longer.”

Ultimately, innovation at PHS isn’t just about technology; it’s about equity.

“There’s an 11-year life expectancy gap between major metro areas and rural Texas,” Dieter says. “Our innovation has been leveling the field, so everyone has access to high-quality diagnostics and care, regardless of where they live.”

Aegis Aerospace appoints Houston space leader as new president

moving up

Houston-based Aegis Aerospace's current chief strategy officer, Matt Ondler, will take on the additional role of president on Jan. 1. Ondler will succeed Bill Hollister, who is retiring.

“Matt's vision, experience, and understanding of our evolving markets position us to build on our foundation and pursue new frontiers,” Stephanie Murphy, CEO of Aegis Aerospace, said in a news release.

Hollister guided Aegis Aerospace through expansion and innovation in his three years as president, and will continue to serve in the role of chief technology officer (CTO) for six months and focus on the company's technical and intellectual property frameworks.

"Bill has played an instrumental role in shaping the success and growth of our company, and his contributions leave an indelible mark on both our culture and our achievements," Murphy said in a news release.

Ondler has a background in space hardware development and strategic leadership in government and commercial sectors. Ondler founded subsea robots and software company Houston Mechatronics, Inc., now known as Nauticus Robotics, and also served as president, CTO and CSO during a five-year tenure at Axiom Space. He held various roles in his 25 years at NASA and was also named to the Texas Aerospace Research and Space Economy Consortium Executive Committee last year.

"I am confident that with Matt at the helm as president and Bill supporting us as CTO, we will continue to build on our strong foundation and further elevate our impact in the space industry," Murphy said in a news release. "Matt's vision, experience, and understanding of our evolving markets position us to build on our foundation and pursue new frontiers."

Rice University launches new center to study roots of Alzheimer’s and Parkinson’s

neuro research

Rice University launched its new Amyloid Mechanism and Disease Center last month, which aims to uncover the molecular origins of Alzheimer’s, Parkinson’s and other amyloid-related diseases.

The center will bring together Rice faculty in chemistry, biophysics, cell biology and biochemistry to study how protein aggregates called amyloids form, spread and harm brain cells. It will serve as the neuroscience branch of the Rice Brain Institute, which was also recently established.

The team will work to ultimately increase its understanding of amyloid processes and will collaborate with the Texas Medical Center to turn lab discoveries into real progress for patients. It will hold its launch event on Jan. 21, 2026, and hopes to eventually be a launchpad for future external research funding.

The new hub will be led by Pernilla Wittung-Stafshed, a Rice biophysicist and the Charles W. Duncan Jr.-Welch Chair in Chemistry.

“To make a real difference, we have to go all the way and find a cure,” Wittung-Stafshede said in a news release. “At Rice, with the Amyloid Mechanism and Disease Center as a catalyst, we have the people and ideas to open new doors toward solutions.”

Wittung-Stafshede, who was recruited to Rice through a Cancer Prevention and Research Institute of Texas grant this summer, has led pioneering work on how metal-binding proteins impact neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases. Her most recent study, published in Advanced Science, suggests a new way of understanding how amyloids may harm cells and consume the brain’s energy molecule, ATP.

According to Alzheimer’s Disease International, neurodegenerative disease cases could reach around 78 million by 2030 and 139 million by 2050. Wittung-Stafshede’s father died of dementia several years ago.

“This is close to my heart,” Wittung-Stafshede added in the news release. “Neurodegenerative diseases such as dementia, Alzheimer’s and Parkinson’s are on the rise as people live longer, and age is the largest risk factor. It affects everyone.”