With the Texas Medical Center in their backyard, these Houston biotech companies are creating breakthrough technologies. Getty Images

Houston is the home of the largest medical center in the world, so it comes as no surprise that the Bayou City is also home to breakthrough technologies. Here are five Houston companies developing some of this biotech advancements.

Moleculin Biotech Inc.

Houston-based Moleculin has three different oncology technologies currently in trials. Getty Images

Immunotherapy and personalized medicine get all the headlines lately, but in the fight against cancer, a natural compound created by bees could beat them in winning one battle.

In 2007, chairman and CEO Walter Klemp founded Moleculin Biotech Inc. as a private company. The former CPA had found success in life sciences with a company that sold devices for the treatment of acne. That introduction into the field of medical technology pushed him toward more profound issues than spotty skin.

"Coincidentally, the inventor of that technology had a brother who was a neuro-oncologist at MD Anderson," Klemp recalls.

The since-deceased Dr. Charles Conrad slowly lured Klemp into what he calls the "cancer ecosphere" of MD Anderson. In 2016, the company went public. And it looks like sooner rather than later, it could make major inroads against some of the toughest cancers to beat. Read the full story here.

Cavu Biotherapies

Dr. Colleen O'Connor has adapted immunotherapy treatments to be used in dogs. Courtesy of CAVU Biotherapies

Breakthrough biotech doesn't have to just be for humans. More than three years after its founding, Houston-based veterinary biotech company CAVU Biotherapies' had its first cancer patient: a black Labrador in Pennsylvania diagnosed with B-cell lymphoma.

Dr. Colleen O'Connor, CEO and founder of CAVU Biotherapies, established the company in July 2015 with a goal to help pets live longer post-cancer diagnoses. O'Connor, who earned a PhD in toxicology with a specialty in immunology, has more than a decade of hands-on experience researching cancer treatments.

"Our goal is to scale up and be able to increase our dogs' qualities of life with us," O'Connor said. "We want to keep families intact longer and we want to be able to modernize cancer care for our animals." Read the full story here.

Innovative Biochips

iBiochips, led by founder Lidong Qin, was awarded a $1.5 million grant in September to help develop a new technology that delivers data about the cell's genetic makeup and reports abnormalities. Courtesy of Lidong Qin

Innovative Biochips, a Houston-based biotechnology company, is one step closer to commercializing technology that the company hopes will provide an opportunity for researchers to detect diseases earlier.

The company was founded three years ago by Dr. Lidong Qin, a professor at the Houston Methodist Research Institute's department of nanomedicine. He launched iBiochips as an independent faculty startup that licensed technology from Houston Methodist. Qin says he wanted to engineer and manufacture devices that focus on revolutionizing single-cell isolation and genetic analysis. Read the full story here.

Celltex

Celltex's stem cell technology has received positive results from its multiple sclerosis, Parkinson's, and rheumatoid arthritis patients. Courtesy of Celltex

A Houston stem cell company is making strides in regenerative medicine. Celltex's treatment has been proved effective with its patients. Eighty-three percent of multiple sclerosis patients have reported improvement of symptoms specific to their disease, as have 73 percent of Parkinson's sufferers. But the staggering fact is that 100 percent of 58 respondents with rheumatoid arthritis say they have benefited.

David Eller, chairman, co-founder and CEO of the company, also recently announced the company's expansion to Saudi Arabia. Read the full story here.

Ridgeline Therapeutics

Houston-based Ridgeline Therapeutics isn't going to allow you beat aging, but someday it may well help you to live without muscle loss or diabetes. Getty Images

Stan Watowich pictures a world where elderly people have the same healthy muscles they had at a younger age. Watowich is CEO of Ridgeline Therapeutics, a spin-off company of the University of Texas Medical Branch in Galveston where he is an associate professor of biochemistry and molecular biology, and he wants to make it clear that he is not going to cure aging.

"You and I are still going to get old," he says. "But we have our hopes that as we get old our muscles will stay healthy."

He's talking about the drug candidate, RLT-72484. It has been shown to reactivate muscle stem cells and regenerate skeletal muscle in aged laboratory mice. Read the full story here.


Armed with their doctorate degrees and startups, these three STEM biotech innovators are going places. Courtesy photos

3 Houston heath tech innovators to know this week

Who's Who

Whether it's for dogs or dating, Houston is prime for innovative leaders in health science startups, and there are three in particular you need to know going into a new week. From a DNA-based dating app creator and a researcher curing cancer in dogs to cutting-edge biotech leader, here are the Houston innovators to know. Doctorate degrees and startup companies in hand, each of these entrepreneurs is going places.

Brittany Barreto, co-founder and CEO of Pheramor

Courtesy of Pheramor

Brittany Barreto was studying genetics in college, and her professor was talking about how there are 11 genes in DNA that can determine physical compatibility with others. She had the idea right then and there in the classroom to make a DNA-based dating app. Almost 10 years later, she's done it, with Pheramor.

The Houston startup has launched nationwide and is in the midst of another capital campaign. Barreto is also looking to expand her team to account for the growth and success.

Lidong Qin, founder of Innovative Biochips

Courtesy of Lidong Qin

Lidong Qin spends his days as a professor at the Houston Methodist Research Institute's department of nanomedicine, but three years ago, he expanded his resume. He launched his biotech startup, Innovative Biochips, as an independent faculty startup that licensed technology from Houston Methodist.

Qin says it can be difficult to launch a biotech startup in Houston, since the industry requires hefty initial funds to open a facility, get patents and hire a team of researchers. Now, iBiochips is armed with private investments and a $1.5 million grant from the National Institutes of Health's Small Business Technology Transfer program to continue researching and developing early disease detection technologies.

Colleen O'Connor, founder of CAVU Biotherapies 

CAVU Colleen O'Connor

Courtesy of CAVU Biotherapies

Losing a pet is awful, and for so many people, pets are full-blown family members. When Colleen O'Connor lost her furry family members to cancer, she knew she had to do something about it. Cancer treatment in humans had evolved to include immunotherapy, and O'Connor thought man's best friend deserved an upgrade from the 1980s practices veterinarians use.

She created Houston-based CAVU Biotherapies, and, in September, the first treatment was administered to a black lab named Franklin. O'Connor is focused on expanding her treatment and its access to pups so that no pet owner has to prematurely say goodbye to good boys and girls.

iBiochips was awarded a $1.5 million grant in September to help develop a new technology that delivers data about the cell's genetic makeup and reports abnormalities. Getty Images

Houston-based biotech company aims to revolutionize cellular dissection technology

digital disease detective

Innovative Biochips, a Houston-based biotechnology company, is one step closer to commercializing technology that the company hopes will provide an opportunity for researchers to detect diseases earlier.

The company was founded three years ago by Dr. Lidong Qin, a professor at the Houston Methodist Research Institute's department of nanomedicine. He launched iBiochips as an independent faculty startup that licensed technology from Houston Methodist. Qin says he wanted to engineer and manufacture devices that focus on revolutionizing single-cell isolation and genetic analysis.

Qin says it can be difficult to launch a biotech startup in Houston, since the industry requires hefty initial funds to open a facility, get patents and hire a team of researchers.

"In the Houston area, even though it looks like it's a lot of state money (grants) around, it's very limited, and that's been a challenge of ours," Qin says.

But with the help of a $1.5 million investment from a private investor, Qin was able to launch iBiochips in 2015, and shortly after opened his own lab on Kirby Drive.

Recently, iBiochips was awarded a $1.5 million grant in September from the National Institutes of Health's Small Business Technology Transfer program. The grant will further support the company's research and development of an automated yeast dissection chip, which is designed to perform a raw analysis of single cells and deliver data about the cell's genetic makeup and report abnormalities.

Prior to the phase two grant, iBiochips was also awarded NIH's phase one grant of $225,000 in September 2017 to develop a prototype for the company's flagship cell isolation product, the Smart Aliquotor.

The Smart Aliquotor is a single-cell isolation dissection platform that allows scientists to analyze larger amounts of cells at a much faster rate than traditional isolation methods, Qin says. He says the system is also more convenient for researchers to operate because traditional cell isolation techniques require a lot of human effort.

To isolate the cells with a Smart Aliquotor, a scientist would take a patient's blood sample and inject it into a single point in the device. The blood sample would then travel through microfluidic channels into the device's 60 to 100 isolated holes, Qin says.

"In three days, we can handle about one million cells," Qin says. "In a traditional approach, people can handle only one or two cells in three days. So that is how we came to the [idea of the] chip can help a scientist do 20 years of work in three days."

The Smart Aliquotor can then be examined with iBiochips' newly funded automated dissection chip, which Qin says has the potential to detect cancer or infectious diseases earlier than before.

"If you isolate a cell by itself — even in the very beginning stage when the aggressive cells are not as dominating yet — you can still see that [abnormality in the sample]," Qin says.

iBiochips' products are currently only being manufactured for research use at clinical labs, universities and pharmacies. However, with the recent grant award, Qin says the company's research team plans to spend the next three to five years preparing the products for worldwide commercialization.


Dr. Lidong Qin is a professor at the Houston Methodist Research Institute's department of nanomedicine. He launched iBiochips as an independent faculty startup that licensed technology from Houston Methodist.Courtesy of Lidong Qin

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Annual student startup competition in Houston names teams for 2023

getting pitch perfect

Rice Alliance for Technology and Entrepreneurship has named the 42 student startup teams that were extended invitations to compete in the 23rd annual Rice Business Plan Competition

The 2023 startup competition will take place on Rice University campus May 11 to 13, and the teams representing 37 universities from six countries will pitch to investors, mentors, and other industry leaders for the chance to win funding and prizes. Last year's RBPC doled out nearly $2 million in investment prizes.

This year, Rice saw its largest number of student startups applying for the RBPC internal qualifier from within campus. The university selected three to move on to compete at RBPC in May — Sygne Solutions, Neurnano Therapeutics, and Tierra Climate, which also received a total of $5,000 in cash prizes to these top three teams.

The 2023 RBPC will focus on five categories: energy, cleantech and sustainability; life science and health care solutions; consumer products and services; hard tech; and digital enterprise.

This invited companies, if they attend, will join the ranks of the 784 teams that previously competed in RBPC and have raised more than $4.6 billion in capital, as well as seen more than 50 successful exits including five IPOs.

The 2023 Rice Business Plan Competition invitees, according to Rice University's news release:

  • Active Surfaces, Massachusetts Institute of Technology
  • Adrigo Insights, Saint Mary’s University (Canada)
  • AirSeal, Washington University in St. Louis
  • Algbio, Yeditepe University (Turkey)
  • Arch Pet Food, University of Chicago
  • Astria Biosciences, University of Pittsburgh
  • Atma Leather, Yale University
  • Atop, UCLA
  • Biome Future, University of Florida
  • BioSens8, Boston University
  • BlueVerse, Texas Tech University
  • Boardible, Northwestern University
  • Boston Quantum, Massachusetts Institute of Technology
  • ceres plant protein cereal, Tulane University
  • Citrimer, University of Michigan
  • Dart Bioscience, University of Oxford (United Kingdom)
  • DetoXyFi, Harvard University
  • E-Sentience, Duke University
  • Edulis Therapeutics, Carnegie Mellon University
  • FluxWorks, Texas A&M University
  • Integrated Molecular Innovations, Michigan Technological University
  • Inzipio, RWTH Aachen University (Germany)
  • LoopX AI, University of Waterloo (Canada)
  • Magnify Biosciences, Carnegie Mellon University
  • MiraHeart, Johns Hopkins University
  • MyLÚA, Cornell University
  • Outmore Living, University of Texas
  • Pathways, Harvard University
  • Pediatrica Therapeutics, University of Arkansas
  • Perseus Materials, Stanford University
  • Pike Robotics, University of Texas
  • Quantanx, Arizona State University
  • Sheza, San Diego State University
  • Skali, Northwestern University
  • Sundial Solar Components, University of Utah
  • Thryft Ship, University of Georgia
  • Tierra Climate, Rice University
  • TrashTrap Sustainability Solutions, Visvesvaraya Technological University (India)
  • Unchained, North Carolina A&T State University
  • Unsmudgeable, Babson College
  • Vivicaly, University of Pennsylvania
  • Zaymo, Brigham Young University

Houston space health institute to launch more experiments into space on upcoming mission

ready for takeoff

Houston's Translational Research Institute for Space Health, or TRISH, will launch six more experiments into space this spring aboard Axiom Space's Ax-2 mission, the organization announced this week.

The biomedical research conducted through TRISH, in consortium with CalTeach and MIT, will look into how space travel impacts everything from motion sickness to memory over the course of the mission's 10-day stint on the International Space Station.

The crew will consist of four astronauts: Commander Peggy Whitson (previously with NASA), Pilot John Shoffner and Mission Specialists Ali AlQarni and Rayyanah Barnawi. It's a historic team, bringing the first female private space crew commander and the first Saudi astronauts to the ISS.

“Insights gathered from this work improve our understanding of how the human body and mind respond to spaceflight, helping us to prepare future astronauts to remain safe and healthy during longer-duration missions," Dr. Dorit Donoviel, TRISH executive director and professor in the Center for Space Medicine at Baylor College of Medicine, says in a statement.

The six projects onboard the mission have been developed by researchers within TRISH as well as the University of Pennsylvania Perelman School of Medicine, Johns Hopkins University and Baylor College of Medicine. They aim to assess the following:

  • Spaceflight participants’ performance in memory, abstraction, spatial orientation, emotion recognition, risk decision making and sustained attention before and after the mission -Astronauts’ inner ears and eyes' response to motion before and after space travel and how this relates to motion sickness and nausea during launch and landing
  • The effects of spaceflight on the human body at the genomic level
  • Changes to the eyes and brain during spaceflight
  • Astronaut's sleep, personality, health history, team dynamics and immune-related symptoms
  • Sensorimotor abilities and changes in space and how this can impact astronauts' ability to stand, balance and have full body control on the moon

Some of this information will become part of TRISH’s Enhancing eXploration Platforms and ANalog Definition, or EXPAND, program, which aims to boost human health on commercial space flights through its database. The program launched in 2021.

Ax-2 is Axiom's second all-private astronaut mission to the ISS and will launch out of NASA’s Kennedy Space Center in Florida aboard a SpaceX's Dragon spacecraft. Axiom was first established in 2016 with the goal of building the world's first commercial space station.

TRISH is also slated to launch nine experiments on board SpaceX's Polaris Dawn mission, which is now expected to launch this summer. The research aboard Polaris Dawn is intended to complement research supported by TRISH on the Inspiration4 all-civilian mission to orbit, which was also operated by SpaceX in 2021.

Houston research: It matters how we talk about social, economic disparities

houston voices

Look closely at any news article about inequality and you will quickly notice that there is more than one way to describe what is happening.

For example:

“In 2022, men earned $1.18 for every dollar women earned.”

“In 2022, women earned 82 cents for every dollar men earned.”

“In 2022, the gender wage gap was 18 cents per dollar.”

When pointing out differences in access to resources and opportunities among groups of people, we tend to use three types of language:

  1. Advantaged — Describes an issue in terms of advantages the more dominant group enjoys.
  2. Disadvantaged — Describes an issue in terms of disadvantages the less dominant group experiences.
  3. Neutrality — Stays general enough to avoid direct comparisons between groups of people.

The difference between these three lenses, referred to as “frames” in academic literature, may be subtle. We may miss it completely when skimming a news article or listening to a friend share an opinion. But frames are more significant than we may realize.

“Frames of inequality matter because they shape our view of what is wrong and what should be fixed,” says Rice Business Professor Sora Jun.

Jun led a research team that conducted multiple studies to understand which of the three frames people typically use to describe social and economic inequality. In total, they analyzed more than 19,000 mainstream media articles and surveyed more than 600 U.S.-based participants.

In Chronic frames of social inequality: How mainstream media frame race, gender, and wealth inequality, the team published two major findings.

First, people tend to describe gender and racial inequality using the language of disadvantage. For example, “The data showed that officers pulled over Black drivers at a rate far out of proportion to their share of the driving-age population.”

Jun’s team encountered the same rhetorical tendency with gender inequality. In most cases, people describe instances of gender inequality (e.g., the gender pay gap) in terms of a disadvantage for women. We are far more likely to use the statement “Women earned 82 cents for every dollar men earned” than “Men earned $1.18 cents for every dollar women earned.”

"We expected that people would use the disadvantage framework to describe racial and gender inequalities, and it turned out to be true,” says Jun. “We think that the reason for this stems from how legitimate we perceive different hierarchies to be.” Because demographic categories like gender and race are unrelated to talent or effort, most people find it unfair that resources are distributed unevenly along these lines.

On the other hand, Jun expected people to describe wealth inequality in terms of advantage rather than disadvantage. The public typically considers this form of inequality to be more fair than racial or gender inequality. “In the U.S., there is still a widespread belief in economic mobility — that if you work hard enough, you can change the socioeconomic group you are in,” she says.

But in their second major finding, she and fellow researchers discovered that the most common frame used to describe wealth inequality was no frame at all. We find this neutrality in statements like “Disparities in education, health care and social services remain stark.”

Jun is not sure why people take a neutral approach more frequently when describing wealth inequality (speaking specifically of economic classes outside of gender and race). She suspects it has something to do with the fact that we view wealth as a fluid and continuous spectrum.

The merits of the three frames are up for debate. Using the frame of disadvantage might seem to portray issues more sympathetically, but some scholars point to potential downsides. The language of disadvantage installs the dominant group as the measuring stick for everyone else. It may also put the onus of change on the disadvantaged group while making the problem seem less relevant to the dominant group.

“When we speak about the gender gap in terms of disadvantage, and helping women earn more compared to men, we automatically assume that men are making the correct amount,” says Jun. “But maybe we should be looking at both sides of the equation.”

On the other hand, Jun cautions against using a one-size-fits-all approach to describing inequality. “We have to be careful not to jump to an easy conclusion, because the causes of inequality are so vast,” she says.

For example, men tend to interrupt conversations in team meetings at higher rates than women. “Should we frame this behavior in terms of advantage or disadvantage, which naturally leads us to prompt men to interrupt less and women to interrupt more?” asks Jun. “We really don’t know until we understand the ideal number of interruptions and why this deviation is happening. Ultimately, how we talk about inequality depends on what we want to accomplish. I hope that through this research, people will think more carefully about how they describe inequality so that they capture the full story before they act.”

------

This article originally ran on Rice Business Wisdom and was based on research fromSora Jun, Rosalind M. Chow, A. Maurits van der Veen and Erik Bleich.