Houston-based Moleculin Biotech now has four different oncology treatment currently in trials. Getty Images

A Houston-based biotech company has wrapped up enrollment for its most recent clinical trial of its cancer-fighting drug.

Moleculin Biotech Inc. (Nasdaq: MBRX) has launched its fourth ongoing trial — this time focusing on Cutaneous T-Cell Lymphoma, or CTCL, treatment. The company's other three trials include treatment for glioblastoma, an aggressive brain cancer, pancreatic cancer, one of the most virulent killers in oncology, and acute myeloid leukemia, or AML.

To treat these various types of cancers, Moleculin has a several drugs it's in preclinical or clinical trials testing — most biotech companies have only one they focus on. WP1220 is the drug that will be used in this trial for topical CTCL treatment of the cancer's resulting skin lesions.

"We believe there continues to be an unmet need for an improved topical therapy for Stage I-III CTCL skin lesions," says Walter Klemp, Moleculin's chairman and CEO, in a news release, "especially one that may avoid significant unwanted side effects."

WP1220 is what's known as a p-STAT3 inhibitor. STAT3 is a transcription factor that encourages tumor development. Moleculin's technology directly attacks the tumor, but also quiets T Cells, which allows the body's own immune system to fight the cancer itself. Essentially, it works both as chemotherapy and immunotherapy.

"This proof of concept, if successful, could be an important first demonstration of a therapeutic effect in humans from such a p-STAT3 inhibitor," Klemp continues. "We are pleased with how quickly this trial reached full recruitment and we are hopeful to be able to announce results from this trial yet this year."

Klemp founded the company in 2007, and Moleculin went public in 2016. Now, with the company's four clinical trials, Moleculin is even closer to saving lives with its products.

"Notwithstanding the relatively rare nature of CTCL, we believe showing activity with one of our STAT3 inhibitors, within our WP1066 family of molecules, could be an indicator of both the value of p-STAT3 as a target and the potential for our drugs in other cancers where STAT3 is highly activated," Klemp says in the release.

With the Texas Medical Center in their backyard, these Houston biotech companies are creating breakthrough technologies. Getty Images

5 Houston biotech companies taking health care to new levels

The future is now

Houston is the home of the largest medical center in the world, so it comes as no surprise that the Bayou City is also home to breakthrough technologies. Here are five Houston companies developing some of this biotech advancements.

Moleculin Biotech Inc.

Houston-based Moleculin has three different oncology technologies currently in trials. Getty Images

Immunotherapy and personalized medicine get all the headlines lately, but in the fight against cancer, a natural compound created by bees could beat them in winning one battle.

In 2007, chairman and CEO Walter Klemp founded Moleculin Biotech Inc. as a private company. The former CPA had found success in life sciences with a company that sold devices for the treatment of acne. That introduction into the field of medical technology pushed him toward more profound issues than spotty skin.

"Coincidentally, the inventor of that technology had a brother who was a neuro-oncologist at MD Anderson," Klemp recalls.

The since-deceased Dr. Charles Conrad slowly lured Klemp into what he calls the "cancer ecosphere" of MD Anderson. In 2016, the company went public. And it looks like sooner rather than later, it could make major inroads against some of the toughest cancers to beat. Read the full story here.

Cavu Biotherapies

Dr. Colleen O'Connor has adapted immunotherapy treatments to be used in dogs. Courtesy of CAVU Biotherapies

Breakthrough biotech doesn't have to just be for humans. More than three years after its founding, Houston-based veterinary biotech company CAVU Biotherapies' had its first cancer patient: a black Labrador in Pennsylvania diagnosed with B-cell lymphoma.

Dr. Colleen O'Connor, CEO and founder of CAVU Biotherapies, established the company in July 2015 with a goal to help pets live longer post-cancer diagnoses. O'Connor, who earned a PhD in toxicology with a specialty in immunology, has more than a decade of hands-on experience researching cancer treatments.

"Our goal is to scale up and be able to increase our dogs' qualities of life with us," O'Connor said. "We want to keep families intact longer and we want to be able to modernize cancer care for our animals." Read the full story here.

Innovative Biochips

iBiochips, led by founder Lidong Qin, was awarded a $1.5 million grant in September to help develop a new technology that delivers data about the cell's genetic makeup and reports abnormalities. Courtesy of Lidong Qin

Innovative Biochips, a Houston-based biotechnology company, is one step closer to commercializing technology that the company hopes will provide an opportunity for researchers to detect diseases earlier.

The company was founded three years ago by Dr. Lidong Qin, a professor at the Houston Methodist Research Institute's department of nanomedicine. He launched iBiochips as an independent faculty startup that licensed technology from Houston Methodist. Qin says he wanted to engineer and manufacture devices that focus on revolutionizing single-cell isolation and genetic analysis. Read the full story here.

Celltex

Celltex's stem cell technology has received positive results from its multiple sclerosis, Parkinson's, and rheumatoid arthritis patients. Courtesy of Celltex

A Houston stem cell company is making strides in regenerative medicine. Celltex's treatment has been proved effective with its patients. Eighty-three percent of multiple sclerosis patients have reported improvement of symptoms specific to their disease, as have 73 percent of Parkinson's sufferers. But the staggering fact is that 100 percent of 58 respondents with rheumatoid arthritis say they have benefited.

David Eller, chairman, co-founder and CEO of the company, also recently announced the company's expansion to Saudi Arabia. Read the full story here.

Ridgeline Therapeutics

Houston-based Ridgeline Therapeutics isn't going to allow you beat aging, but someday it may well help you to live without muscle loss or diabetes. Getty Images

Stan Watowich pictures a world where elderly people have the same healthy muscles they had at a younger age. Watowich is CEO of Ridgeline Therapeutics, a spin-off company of the University of Texas Medical Branch in Galveston where he is an associate professor of biochemistry and molecular biology, and he wants to make it clear that he is not going to cure aging.

"You and I are still going to get old," he says. "But we have our hopes that as we get old our muscles will stay healthy."

He's talking about the drug candidate, RLT-72484. It has been shown to reactivate muscle stem cells and regenerate skeletal muscle in aged laboratory mice. Read the full story here.


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University professor earns $550k NSF award for wearable imaging tech​

science supported

Another Houston scientist has won one of the highly competitive National Science Foundation (NSF) CAREER Awards.

Lei Li, an assistant professor of electrical and computer engineering at Rice University, has received a $550,000, five-year grant to develop wearable, hospital-grade medical imaging technology capable of visualizing deep tissue function in real-time, according to the NSF. The CAREER grants are given to "early career faculty members who demonstrate the potential to serve as academic models and leaders in research and education."

“This is about giving people access to powerful diagnostic tools that were once confined to hospitals,” Li said in a news release from Rice. “If we can make imaging affordable, wearable and continuous, we can catch disease earlier and treat it more effectively.”

Li’s research focuses on photoacoustic imaging, which merges light and sound to produce high-resolution images of structures deep inside the body. It relies on pulses of laser light that are absorbed by tissue, leading to a rapid temperature rise. During this process, the heat causes the tissue to expand by a fraction, generating ultrasound waves that travel back to the surface and are detected and converted into an image. The process is known to yield more detailed images without dyes or contrast agents used in some traditional ultrasounds.

However, current photoacoustic systems tend to use a variety of sensors, making them bulky, expensive and impractical. Li and his team are taking a different approach.

Instead of using hundreds of separate sensors, Li and his researchers are developing a method that allows a single sensor to capture the same information via a specially designed encoder. The encoder assigns a unique spatiotemporal signature to each incoming sound wave. A reconstruction algorithm then interprets and decodes the signals.

These advances have the potential to lower the size, cost and power consumption of imaging systems. The researchers believe the device could be used in telemedicine, remote diagnostics and real-time disease monitoring. Li’s lab will also collaborate with clinicians to explore how the miniaturized technology could help monitor cancer treatment and other conditions.

“Reducing the number of detection channels from hundreds to one could shrink these devices from bench-top systems into compact, energy-efficient wearables,” Li said in the release. “That opens the door to continuous health monitoring in daily life—not just in hospitals.”

Amanda Marciel, the William Marsh Rice Trustee Chair of chemical and biomolecular engineering and an assistant professor at Rice, received an NSF CAREER Award last year. Read more here.

Houston Spaceport launches $12M expansion for leading space tech co.

to the moon

Houston will get one step closer to the moon, as the Houston Spaceport at Ellington Airport (EFD) has announced an expansion of the lease for Intuitive Machines, the Houston space tech leader dedicated to furthering lunar exploration.

On July 15, the City of Houston announced passage of Amendment 1, which would add three acres of commercial space for Intuitive Machines at the spaceport and a $12 million infrastructure expansion. Approved by the city council and Mayor John Whitmire, the expansion will include new production, testing and support facilities. The amendment extends the current lease for Intuitive Machines from 20 years to 25 years.

"I want to shout out to Intuitive Machines about everything they’re doing at the Houston Spaceport. It’s exciting to see them expand. We’re starting to reach a critical mass out there — more and more aerospace companies want to be at the Spaceport because that’s where innovation is happening,” said Fred Flinkinger, who represents District E on the Houston City Council. “It’s a great sign of momentum, and we’re proud to have them here in Houston."

Intuitive Machines was the first commercial tenant for the Houston Spaceport when it moved into the facility in August 2016. Founded by Stephen Altemus, Kam Ghaffarian, and Tim Crain in 2013, the company holds three contracts with the National Aeronautics and Space Administration (NASA) to deliver payloads to the lunar surface. In 2023, the company opened its doors in Houston with a 105,572-square-foot Lunar Production and Operations Center that contains research and development labs, clean rooms, mission control centers, and a spacecraft assembly floor.


Intuitive Machines landed Odysseus on the moon in February 2024, the first privately owned soft lunar landing ever and the first soft landing since 1972.

The Houston Spaceport is owned and operated by the City of Houston and Houston Airports, who have an eye of keeping the city a prime name in space exploration. As "Houston" was the first word spoken on the moon when Apollo 11 landed in 1969, lunar exploration in particular has a soft place in the heart of the metropolis formerly known as Space City.

“This agreement reinforces Houston’s leadership in space innovation,” said Jim Szczesniak, director of aviation for Houston Airports. “We’re building infrastructure and supporting the next era of lunar and deep space exploration, right here at Houston Spaceport. This partnership represents the forward-thinking development that fuels job creation and drives long-term economic growth.”

Houston hardtech accelerator names 8 scientists to 2025 cohort

ready, set, activate

National hardtech-focused organization Activate has named its 2025 cohort of scientists, which includes new members to Activate Houston.

The Houston hub was introduced last year, and joins others in Boston, New York, and Berkley, California—where Activate is headquartered. The organization also offers a virtual and remote cohort, known as Activate Anywhere. Collectively, the 2025 Activate Fellowship consists of 47 scientists and engineers from nine U.S. states.

This year's cohort comprises subject matter experts across various fields, including quantum, robotics, biology, agriculture, energy and direct air capture.

Activate aims to support scientists at "the outset of their entrepreneurial journey." It partners with U.S.-based funders and research institutions to support its fellows in developing high-impact technology. The fellows receive a living stipend, connections from Activate's robust network of mentors and access to a curriculum specific to the program for two years.

“Science entrepreneurship is the origin story of tomorrow’s industries,” Cyrus Wadia, CEO of Activate, said in an announcement. “The U.S. has long been a world center for science leadership and technological advancement. When it comes to solving the world’s biggest challenges, hard-tech innovation is how we unlock the best solutions. From infrastructure to energy to agriculture, these Activate Fellows are the bold thinkers who are building the next generation of science-focused companies to lead us into the future.”

The Houston fellows selected for the 2025 class include:

  • Jonathan Bessette, founder and CEO of KIRA, which uses its adaptive electrodialysis system to treat diverse water sources and reduce CO2 emissions
  • Victoria Coll Araoz, co-founder and chief science officer of Florida-based SEMION, an agricultural technology company developing pest control strategies by restoring crops' natural defenses
  • Eugene Chung, co-founder and CEO of Lift Biolabs, a biomanufacturing company developing low-cost, nanobubble-based purification reagents. Chung is completing his Ph.D. in bioengineering at Rice University.
  • Isaac Ju, co-founder of EarthFlow AI, which has developed an AI-powered platform for subsurface modeling, enabling the rapid scaling of carbon storage, geothermal energy and lithium extraction
  • Junho Lee, principal geotechnical engineer of Houston-based Deep Anchor Solutions, a startup developing innovative anchoring systems for floating renewables and offshore infrastructure
  • Sotiria (Iria) Mostrou, principal inventor at Houston-based Biosimo Chemicals, a chemical engineering startup that develops and operates processes to produce bio-based platform chemicals
  • Becca Segel, CEO and founder of Pittsburgh-based FlowCellutions, which prevents power outages for critical infrastructure such as hospitals, data centers and the grid through predictive battery diagnostics
  • Joshua Yang, CEO and co‑founder of Cambridge, Massachusetts-based Brightlight Photonics, which develops chip-scale titanium: sapphire lasers to bring cost-effective, lab-grade performance to quantum technologies, diagnostics and advanced manufacturing

The program, led locally by Houston Managing Director Jeremy Pitts, has supported 296 Activate fellows since the organization was founded in 2015. Members have gone on to raise roughly $4 billion in follow-on funding, according to Activate's website.

Activate officially named its Houston office in the Ion last year.

Charlie Childs, co-founder and CEO of Intero Biosystems, which won both the top-place finish and the largest total investment at this year's Rice Business Plan Competition, was named to the Activate Anywhere cohort. Read more about the Boston, New York, Berkley and Activate Anywhere cohorts here.