Coya Therapeutics rang the closing bell at Nasdaq last week, celebrating six months since its IPO, new data from trials, and additions to its team. Photo via LinkedIn

After announcing its initial public offering earlier this year, a Houston therapeutics company has celebrated the milestone and announced recent growth as well.

Coya Therapeutics (Nasdaq: COYA) rang the closing bell last week. The clinical-stage biotech company, which has developed a biologics therapy that prevents further spreading of neurodegenerative diseases by making regulatory T cells functional again, announced the closing of its $15.25 million IPO in January.

"We launched our IPO into one of the toughest biotech capital markets in recent memory and are enormously grateful to all our investors for the confidence they then showed in our prospects," says Howard Berman, CEO and chairman of Coya, in a June 12 letter to stockholders. "I believe that to date, we’ve executed strongly against the goals we then established, and I remain excited about our future."

In the letter, Berman shares some of the recent clinical successes from two treatments — COYA 302, a treatment for ALS, and COYA 301, a treatment for Alzheimer’s Disease. Both treatments have seen strong clinical proof of concept data in the respective open-label studies.

Earlier this year, Coya expanded its C-suite to include Dr. Arun Swaminathan as chief business officer. He has over 20 years of hands-on health care business executive experience. Prior to Coya, Swaminathan served in the same role for Actinium Pharmaceuticals.

"Arun is actively engaged in exploring potential strategic opportunities across our portfolio of assets as we believe successful partnering efforts have the potential to enhance our scientific bona fides, leverage our technology into new areas of unmet medical need, and importantly, possibly secure upfront fees and associated non-dilutive funding," Berman writes in the letter. "We look forward to pursuing additional value creation catalysts that further highlight our entrepreneurialism and ability to execute, while maintaining focus on our core assets."

The latest addition to the Coya team is Guillaume Dorothée, who joins the company's scientific advisory board. A leading expert on the role that the immune system and peripheral-central immune crosstalk play in the pathophysiology of Alzheimer's, he's a tenured research director and team head in neuroimmunology at the French National Institute of Health and Medical Research in Paris.

“I am glad and honored to join such eminent scientists on the prestigious SAB of Coya Therapeutics," he says in a June 5 statement from Coya. "I am fully convinced that innovative Treg-based immunomodulatory approaches, as developed by Coya, are highly promising therapeutic strategies for the treatment of neurodegenerative disorders and other neuroinflammatory conditions. I will be happy to help Coya Therapeutics in this exciting endeavor.”

Recently, Berman joined the Houston Innovators Podcast to discuss Coya's mission and plan post IPO.


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based HPE wins $931M contract to upgrade military data centers

defense data centers

Hewlett Packard Enterprise (HPE), based in Spring, Texas, which provides AI, cloud, and networking products and services, has received a $931 million contract to modernize data centers run by the federal Defense Information Systems Agency.

HPE says it will supply distributed hybrid multicloud technology to the federal agency, which provides combat support for U.S. troops. The project will feature HPE’s Private Cloud Enterprise and GreenLake offerings. It will allow DISA to scale and accelerate communications, improve AI and data analytics, boost IT efficiencies, reduce costs and more, according to a news release from HPE.

The contract comes after the completion of HPE’s test of distributed hybrid multicloud technology at Defense Information Systems Agency (DISA) data centers in Mechanicsburg, Pennsylvania, and Ogden, Utah. This technology is aimed at managing DISA’s IT infrastructure and resources across public and private clouds through one hybrid multicloud platform, according to Data Center Dynamics.

Fidelma Russo, executive vice president and general manager of hybrid cloud at HPE, said in a news release that the project will enable DISA to “deliver innovative, future-ready managed services to the agencies it supports that are operating across the globe.”

The platform being developed for DISA “is designed to mirror the look and feel of a public cloud, replicating many of the key features” offered by cloud computing businesses such as Amazon Web Services (AWS), Microsoft Azure and Google Cloud Platform, according to The Register.

In the 1990s, DISA consolidated 194 data centers into 16. According to The Register, these are the U.S. military’s most sensitive data centers.

More recently, in 2024, the Fort Meade, Maryland-based agency laid out a five-year strategy to “simplify the network globally with large-scale adoption of command IT environments,” according to Data Center Dynamics.

Astros and Rockets launch new streaming service for Houston sports fans

Sports Talk

Houston sports fans now have a way to watch their favorite teams without a cable or satellite subscription. Launched December 3, the Space City Home Network’s SCHN+ service allows consumers to watch the Houston Astros and Houston Rockets via iOS, Apple TV, Android, Amazon Fire TV, or web browser.

A subscription to SCHN+ allows sports fans to watch all Astros and Rockets games, as well as behind-the-scenes features and other on-demand content. It’s priced at $19.99 per month or $199.99 annually (plus tax). People who watch Space City Network Network via their existing cable or satellite service will be able to access SCHN+ at no additional charge.

As the Houston Chronicle notes, the Astros and Rockets were the only MLB and NBA teams not to offer a direct-to-consumer streaming option.

“We’re thrilled to offer another great option to ensure fans have access to watch games, and the SCHN+ streaming app makes it easier than ever to cheer on the Rockets,” Rockets alternate governor Patrick Fertitta said in a statement.

“Providing fans with a convenient way to watch their favorite teams, along with our network’s award-winning programming, was an essential addition. This season feels special, and we’re committed to exploring new ways to elevate our broadcasts for Rockets fans to enjoy.”

Astros owner Jim Crane echoed Feritta’s comments, adding, “Providing fans options on how they view our games is important as we continue to grow the game – we want to make it accessible to as large an audience as possible. We are looking forward to the 2026 season and more Astros fans watching our players compete for another championship.”

SCHN+ is available to customers in Texas; Louisiana; Arkansas; Oklahoma; and the following counties in New Mexico: Dona Ana, Eddy, Lea, Chaves, Roosevelt, Curry, Quay, Union, and Debaca. Fans outside these areas will need to subscribe to the NBA and MLB out-of-market services.

---

This article originally appeared on CultureMap.com.

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.