The potential SBIR rewards far outweigh the challenges, and with determination, your startup could be the next success story. Photo via Getty Images

Grants are everywhere, all the time, but often seem unobtainable for startups. Most companies tell me about their competitors winning grants but don’t know how to secure non-dilutive funding for themselves. It’s true that the SBIR program is competitive — with only 10 to 15 percent of applicants receiving awards — but with a little guidance and perseverance, they are most definitely obtainable.

An SBIR overview

The Small Business Innovation Research program was introduced on the federal level in 1982 with the purpose of de-risking early technologies. While most investors are hesitant to invest in a company that’s still in ideation, the SBIR program would provide an initial level of feasibility funding to develop a prototype. The program issues funds to companies without taking any equity, IP, or asking for the money back.

Since its inception, the SBIR program has funded over 200,000 projects through 11 different federal agencies, including, but not limited to, the Department of Defense, the National Institute of Health, and the National Science Foundation. Federal agencies with R&D budgets over $100 million dedicate at least 3.2 percent of their budget to the SBIR program to fund research initiated by small businesses.

Eligibility and application process

It is no surprise that only small businesses can apply for this non-dilutive funding. For SBIR purposes, a small business is defined as being a for-profit entity, smaller than 500 employees, 51 percent owned by US citizens or permanent residents, and not primarily owned by venture capital groups. This small business must also have the rights to the IP that needs de-risking.

To apply, the small business must have a specific project that needs funding. Normally, this project will have three specific aims that detail the action items that will be attempted during the funded period. Some agencies require a pre-application, like a letter of intent (DOE) or a project pitch (NSF). Others don’t have a screening process and you can simply submit a full application at the deadline. Most agencies published examples of funded or denied applications for you to review.

SBIR phases

Phase I of the SBIR program is the normal entry point for every agency. It takes your product from ideation, through a feasibility study, to having a prototype. While agencies provide various funding amounts, the range is between $75,000 to $300,000 for 3 to 12 months of R&D activities. Applications contain a feasibility research plan (around six pages), an abstract, specific aims, supporting documents, and a budget.

While some programs allow for Direct to Phase II (D2P2) applications, most don’t apply for Phase II until they have secured Phase I funding. This second phase allows companies with completed feasibility studies to test their new prototype at a larger scale. The budgets for this phase range from $600,000 to $3 million and span an average of two years. The research plan is twice as robust and a commercialization plan is also needed.

Tips for success

If you’re wondering if your technology would be a good fit for a certain program, you can start by looking at the SBIR website to see the previously funded projects. The more recent projects will give you an idea of the funding priorities for each agency. Most abstracts will allude to the specific aims, meaning you can get a sense of the research projects that were approved. If you regularly see an agency funding projects similar to yours, you can search sbir.gov/topics for that agency’s research topics and upcoming deadlines.

Your team is one of the most important aspects of the application. Since you will be reviewed by academic experts, it’s helpful to have a principal investigator on your project that has a history of experience or publications with similar technology. Keep in mind that this principal investigator must be primarily employed by your company at the time of the grant. If this individual is employed by a university or nonprofit research organization, consider taking the STTR route so you can utilize their expertise.

Preparing Phase I applications should take no less than eight weeks, and Phase II should take at least ten. Your first step should be read the entire solicitation and create action items. The early action items should be

     
  1. Completing government registrations, like SAM.gov
  2. Writing your abstract and specific aims
  3. Contacting the program manager or director for early feedback

Any bids, estimates, or letters of support may also take time to receive, so don’t delay pursuing these items.

Don’t stop trying

If you speak to any program officer, they will encourage you to keep applying. For resubmissions, you will have a chance to explain why your previous application was denied and what you’ve done to improve. Most companies receive funding on the resubmission. If you get the feeling that a specific agency isn’t the right fit, reach out to other agencies that may be interested in the technology. You may realize that a small pivot may open up better opportunities.

There are frequently published webinars from different agencies that will give overviews of the specific solicitations and allow for Q&A. If you feel stuck or are still concerned about getting started, reach out to an individual or group that can provide guidance. There are plenty of grant writers, some of which have reviewed for the SBIR program for different agencies, who can provide strategy, guidance, reviews, and writing services to provide different levels of help.

Securing SBIR funding can be a game-changer for startups. While the process may seem daunting at first, with the right approach and persistence, it’s very obtainable. Remember, each application is a learning experience, and every iteration brings you closer to success. Whether you seek support from webinars, program officers, or professional grant writers, the key is to keep pushing forward. The potential rewards far outweigh the challenges, and with determination, your startup could be the next SBIR success story.

------

Robert Wegner is the director of business development for Euroleader.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Greentown Labs names Lawson Gow as its new Houston leader

head of hou

Greentown Labs has named Lawson Gow as its Head of Houston.

Gow is the founder of The Cannon, a coworking space with seven locations in the Houston area, with additional partner spaces. He also recently served as managing partner at Houston-based investment and advisory firm Helium Capital. Gow is the son of David Gow, founder of Energy Capital's parent company, Gow Media.

According to Greentown, Gow will "enhance the founder experience, cultivate strategic partnerships, and accelerate climatetech solutions" in his new role.

“I couldn’t be more excited to join Greentown at this critical moment for the energy transition,” Gow said in a news release. “Greentown has a fantastic track record of supporting entrepreneurs in Houston, Boston, and beyond, and I am eager to keep advancing our mission in the energy transition capital of the world.”

Gow has also held analyst, strategy and advising roles since graduating from Rice University.

“We are thrilled to welcome Lawson to our leadership team,” Georgina Campbell Flatter, CEO of Greentown Labs, added in the release. “Lawson has spent his career building community and championing entrepreneurs, and we look forward to him deepening Greentown’s support of climate and energy startups as our Head of Houston.”

Gow is the latest addition to a series of new hires at Greentown Labs following a leadership shakeup.

Flatter was named as the organization's new CEO in February, replacing Kevin Dutt, Greentown’s interim CEO, who replaced Kevin Knobloch after he announced that he would step down in July 2024 after less than a year in the role.

Greentown also named Naheed Malik its new CFO in January.

Timmeko Moore Love was named the first Houston general manager and senior vice president of Greentown Labs. According to LinkedIn, she left the role in January.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston foundation grants $27M to support Texas chemistry research

fresh funding

Houston-based The Welch Foundation has doled out $27 million in its latest round of grants for chemical research, equipment and postdoctoral fellowships.

According to a June announcement, $25.5 million was allocated for the foundation's longstanding research grants, which provide $100,000 per year in funding for three years to full-time, regular tenure or tenure-track faculty members in Texas. The foundation made 85 grants to faculty at 16 Texas institutions for 2025, including:

  • Michael I. Jacobs, assistant professor in the chemistry and biochemistry department at Texas State University, who is investigating the structure and thermodynamics of intrinsically disordered proteins, which could "reveal clues about how life began," according to the foundation.
  • Kendra K. Frederick, assistant professor in the biophysics department at The University of Texas Southwestern Medical Center, who is studying a protein linked to Parkinson’s disease.
  • Jennifer S. Brodbelt, professor in chemistry at The University of Texas at Austin, who is testing a theory called full replica symmetry breaking (fullRSB) on glass-like materials, which has implications for complex systems in physics, chemistry and biology.

Additional funding will be allocated to the Welch Postdoctoral Fellows of the Life Sciences Research Foundation. The program provides three-year fellowships to recent PhD graduates to support clinical research careers in Texas. Two fellows from Rice University and Baylor University will receive $100,000 annually for three years.

The Welch Foundation also issued $975,000 through its equipment grant program to 13 institutions to help them develop "richer laboratory experience(s)." The universities matched funds of $352,346.

Since 1954, the Welch Foundation has contributed over $1.1 billion for Texas-nurtured advancements in chemistry through research grants, endowed chairs and other chemistry-related ventures. Last year, the foundation granted more than $40.5 million in academic research grants, equipment grants and fellowships.

“Through funding basic chemical research, we are actively investing in the future of humankind,” Adam Kuspa, president of The Welch Foundation, said the news release. “We are proud to support so many talented researchers across Texas and continue to be inspired by the important work they complete every day.”

New Houston biotech co. developing capsules for hard-to-treat tumors

biotech breakthroughs

Houston company Sentinel BioTherapeutics has made promising headway in cancer immunotherapy for patients who don’t respond positively to more traditional treatments. New biotech venture creation studio RBL LLC (pronounced “rebel”) recently debuted the company at the 2025 American Society of Clinical Oncology (ASCO) Annual Meeting in Chicago.

Rima Chakrabarti is a neurologist by training. Though she says she’s “passionate about treating the brain,” her greatest fervor currently lies in leading Sentinel as its CEO. Sentinel is RBL’s first clinical venture, and Chakrabarti also serves as cofounder and managing partner of the venture studio.

The team sees an opportunity to use cytokine interleukin-2 (IL-2) capsules to fight many solid tumors for which immunotherapy hasn't been effective in the past. “We plan to develop a pipeline of drugs that way,” Chakrabarti says.

This may all sound brand-new, but Sentinel’s research goes back years to the work of Omid Veiseh, director of the Rice Biotechnology Launch Pad (RBLP). Through another, now-defunct company called Avenge Bio, Veiseh and Paul Wotton — also with RBLP and now RBL’s CEO and chairman of Sentinel — invested close to $45 million in capital toward their promising discovery.

From preclinical data on studies in mice, Avenge was able to manufacture its platform focused on ovarian cancer treatments and test it on 14 human patients. “That's essentially opened the door to understanding the clinical efficacy of this drug as well as it's brought this to the attention of the FDA, such that now we're able to continue that conversation,” says Chakrabarti. She emphasizes the point that Avenge’s demise was not due to the science, but to the company's unsuccessful outsourcing to a Massachusetts management team.

“They hadn't analyzed a lot of the data that we got access to upon the acquisition,” explains Chakrabarti. “When we analyzed the data, we saw this dose-dependent immune activation, very specific upregulation of checkpoints on T cells. We came to understand how effective this agent could be as an immune priming agent in a way that Avenge Bio hadn't been developing this drug.”

Chakrabarti says that Sentinel’s phase II trials are coming soon. They’ll continue their previous work with ovarian cancer, but Chakrabarti says that she also believes that the IL-2 capsules will be effective in the treatment of endometrial cancer. There’s also potential for people with other cancers located in the peritoneal cavity, such as colorectal cancer, gastrointestinal cancer and even primary peritoneal carcinomatosis.

“We're delivering these capsules into the peritoneal cavity and seeing both the safety as well as the immune activation,” Chakrabarti says. “We're seeing that up-regulation of the checkpoint that I mentioned. We're seeing a strong safety signal. This drug was very well-tolerated by patients where IL-2 has always had a challenge in being a well-tolerated drug.”

When phase II will take place is up to the success of Sentinel’s fundraising push. What we do know is that it will be led by Amir Jazaeri at MD Anderson Cancer Center. Part of the goal this summer is also to create an automated cell manufacturing process and prove that Sentinel can store its product long-term.

“This isn’t just another cell therapy,” Chakrabarti says.

"Sentinel's cytokine factory platform is the breakthrough technology that we believe has the potential to define the next era of cancer treatment," adds Wotton.