DexMat, a Houston-based materials science startup with tech originating at Rice University, has raised $3 million. Image via Getty Images

A material science startup with technology originating at Rice University has announced it has closed its seed round of funding.

DexMat raised $3 million in funding in a round led by Shell Ventures with participation from Overture Ventures, Climate Avengers and several individuals. The company transforms hydrocarbons, renewable fuels, and captured carbon into its flagship product Galvorn.

“DexMat presents an opportunity to capture methane, an abundant and inexpensive resource, and use it to replace materials such as steel, aluminum, and copper with a more sustainable option. We are excited to be part of DexMat’s journey going forward and to realize their ambitions,” says Aimee LaFleur, investment principal at Shell, in a news release.

Alongside the announcement of the seed round, DexMat has named Bryan Guido Hassin as its new CEO. Hassin, who was previously a member of the company's board of directors, has been at the helm of multiple climate tech startups and most recently co-founded Third Derivative. Dmitri Tsentalovich, the previous CEO, is transitioning to CTO.

Bryan Guido Hassin has been named CEO of DexMat. Photo via LinkedIn

“Before joining DexMat, as CEO of Third Derivative, I was introduced to easily over 2,000 innovative new concepts and technologies. DexMat’s solution was one of the most impactful I came across, which is precisely why I’m so excited to be joining the team,” says Hassin in a news release. “The opportunity to eventually cut up to 3 gigatons of CO2 annually in one of the most underserved markets of the clean energy transition — heavy industry — was too important for me to pass by.”

The product impacts the climate tech space on two levels. First, in the production process, the carbon is 'locked' into the Galvorn material structure as a form of long-term carbon storage, according to the release. On the use side, the material displaces carbon-intensive materials — like steel, aluminum, and copper.

"The world's net zero future is entirely dependent on electrifying everything and decarbonizing the built environment," says Shomik Dutta, co-founder and managing partner at Overture Ventures, in the release. "Metals like copper and steel sit at the heart of these trillion-dollar markets, and DexMat's technology promises carbon-negative, lighter, and stronger versions of what we currently mine and melt. Companies like this can help cement America's leadership in the most important transition of our lifetimes."

DexMat was founded to commercialize materials science technology that originally developed in the Rice University laboratory of co-founder Professor Matteo Pasquali. According to the release, the company was built on over $20 million in non-dilutive funding — including grants from from the Air Force Research Laboratory, Air Force Office of Scientific Research, U.S. Department of Energy, NASA, Advanced Functional Fabrics of America, and the National Science Foundation — with Rice University included in the list of original investors.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Intel Corp. and Rice University sign research access agreement

innovation access

Rice University’s Office of Technology Transfer has signed a subscription agreement with California-based Intel Corp., giving the global company access to Rice’s research portfolio and the opportunity to license select patented innovations.

“By partnering with Intel, we are creating opportunities for our research to make a tangible impact in the technology sector,” Patricia Stepp, assistant vice president for technology transfer, said in a news release.

Intel will pay Rice an annual subscription fee to secure the option to evaluate specified Rice-patented technologies, according to the agreement. If Intel chooses to exercise its option rights, it can obtain a license for each selected technology at a fee.

Rice has been a hub for innovation and technology with initiatives like the Rice Biotech Launch Pad, an accelerator focused on expediting the translation of the university’s health and medical technology; RBL LLC, a biotech venture studio in the Texas Medical Center’s Helix Park dedicated to commercializing lifesaving medical technologies from the Launch Pad; and Rice Nexus, an AI-focused "innovation factory" at the Ion.

The university has also inked partnerships with other tech giants in recent months. Rice's OpenStax, a provider of affordable instructional technologies and one of the world’s largest publishers of open educational resources, partnered with Microsoft this summer. Google Public Sector has also teamed up with Rice to launch the Rice AI Venture Accelerator, or RAVA.

“This agreement exemplifies Rice University’s dedication to fostering innovation and accelerating the commercialization of groundbreaking research,” Stepp added in the news release.

Houston team develops low-cost device to treat infants with life-threatening birth defect

infant innovation

A team of engineers and pediatric surgeons led by Rice University’s Rice360 Institute for Global Health Technologies has developed a cost-effective treatment for infants born with gastroschisis, a congenital condition in which intestines and other organs are developed outside of the body.

The condition can be life-threatening in economically disadvantaged regions without access to equipment.

The Rice-developed device, known as SimpleSilo, is “simple, low-cost and locally manufacturable,” according to the university. It consists of a saline bag, oxygen tubing and a commercially available heat sealer, while mimicking the function of commercial silo bags, which are used in high-income countries to protect exposed organs and gently return them into the abdominal cavity gradually.

Generally, a single-use bag can cost between $200 and $300. The alternatives that exist lack structure and require surgical sewing. This is where the SimpleSilo comes in.

“We focused on keeping the design as simple and functional as possible, while still being affordable,” Vanshika Jhonsa said in a news release. “Our hope is that health care providers around the world can adapt the SimpleSilo to their local supplies and specific needs.”

The study was published in the Journal of Pediatric Surgery, and Jhonsa, its first author, also won the 2023 American Pediatric Surgical Association Innovation Award for the project. She is a recent Rice alumna and is currently a medical student at UTHealth Houston.

Bindi Naik-Mathuria, a pediatric surgeon at UTMB Health, served as the corresponding author of the study. Rice undergraduates Shreya Jindal and Shriya Shah, along with Mary Seifu Tirfie, a current Rice360 Global Health Fellow, also worked on the project.

In laboratory tests, the device demonstrated a fluid leakage rate of just 0.02 milliliters per hour, which is comparable to commercial silo bags, and it withstood repeated disinfection while maintaining its structure. In a simulated in vitro test using cow intestines and a mock abdominal wall, SimpleSilo achieved a 50 percent reduction of the intestines into the simulated cavity over three days, also matching the performance of commercial silo bags. The team plans to conduct a formal clinical trial in East Africa.

“Gastroschisis has one of the biggest survival gaps from high-resource settings to low-resource settings, but it doesn’t have to be this way,” Meaghan Bond, lecturer and senior design engineer at Rice360, added in the news release. “We believe the SimpleSilo can help close the survival gap by making treatment accessible and affordable, even in resource-limited settings.”