Texas A&M University-Fort Worth will be the home of the FAA's new Center for Advanced Aviation Technologies. Photo via Getty Images.

The Texas A&M University System will run the Federal Aviation Administration’s new Center for Advanced Aviation Technologies, which will focus on innovations like commercial drones.

“Texas is the perfect place for our new Center for Advanced Aviation Technologies,” U.S. Transportation Secretary Sean Duffy said in a release. “From drones delivering your packages to powered lift technologies like air taxis, we are at the cusp of an aviation revolution. The [center] will ensure we make that dream a reality and unleash American innovation safely.”

U.S. Sen. Ted Cruz, a Texas Republican, included creation of the center in the FAA Reauthorization Act of 2024. The center will consist of an airspace laboratory, flight demonstration zones, and testing corridors.

Texas A&M University-Corpus Christi will lead the initiative, testing unstaffed aircraft systems and other advanced technologies. The Corpus Christi campus houses the Autonomy Research Institute, an FAA-designated test site. The new center will be at Texas A&M University-Fort Worth.

The College Station-based Texas A&M system says the center will “bring together” its 19 institutions, along with partners such as the University of North Texas in Denton and Southern Methodist University in University Park.

According to a Department of Transportation news release, the center will play “a pivotal role” in ensuring the safe operation of advanced aviation technologies in public airspace.

The Department of Transportation says it chose the Texas A&M system to manage the new center because of its:

  • Proximity to major international airports and the FAA’s regional headquarters in Fort Worth
  • Existing infrastructure for testing of advanced aviation technologies
  • Strong academic programs and industry partnerships

“I’m confident this new research and testing center will help the private sector create thousands of high-paying jobs and grow the Texas economy through billions in new investments,” Cruz said.

“This is a significant win for Texas that will impact communities across our state,” the senator added, “and I will continue to pursue policies that create new jobs, and ensure the Lone Star State continues to lead the way in innovation and the manufacturing of emerging aviation technologies.”

This tiny “smart car” is a lot more powerful than you might think. Photo by Jon Burke/UH

University of Houston gets $2M to launch innovative transportation-focused cybersecurity center

traffic safety

The University of Houston is now leading a national consortium focused on cybersecurity in the transportation sector.

Known as the Transportation Cybersecurity Center for Advanced Research and Education, or CYBER-CARE, it's backed by a $2 million grant from U.S. Department of Transportation for its first year, with anticipated total federal funding of $10 million over five years, as part of the department's University Transportation Centers program that aims to address a number of topics in the field.

UH's center aims to "establish a fundamental knowledge base and explore advanced theories of how to best mitigate impacts of potential large-scale cyberattacks on transportation infrastructure," according to a release from the university. This includes protecting vehicle control systems, developing industry-wide best practices, responding to potential cyber incidents and introducing ways to recover quickly from cyber incidents in traffic networks.

CYBER-CARE is led by Yunpeng “Jack” Zhang, associate professor in the Department of Information Science Technology at the UH and director of the center.

"Our goal to make our intelligent transportation system (ITS) safer for all road users. That aligns well with the USDOT’s strategic goal of improving safety,” Zhang explained in a statement. “We also will promote interdisciplinary research and education across the transportation and cybersecurity domains.”

The center opened earlier this year within UH's Cullen College of Engineering’s Division of Technology. Houston and Texas colleges Rice University and Texas A&M University-Corpus Christi have joined the consortium with UH, along with Embry-Riddle Aeronautical University, University of Cincinnati and University of Hawai‘i at Mānoa.

The DOT's University Transportation Centers first launched in 1988 to conduct research. Support has ebbed and flowed over the years, but has seen some uptick recently. The Biden Administration's 2021 Bipartisan Infrastructure Law authorized 35 UTCs to receive a total of $90 million in funding from 2022 to 2026 to address issues like traffic congestion, safety, infrastructure durability and cybersecurity risks.

According to the DOT's website there are other Texas UTCs at University of Texas at Austin, University of Texas Arlington, Texas A&M University College Station, Prairie View A&M University and Texas State University.

Last year, Texas A&M also launched a new institute for research and education regarding cybersecurity. The Global Cyber Research Institute was funded by $10 million in gifts from former Texas A&M student Ray Rothrock, a venture capitalist and cybersecurity expert, and other donors.

Nuro is now able to roll out its new model of self-driving vehicles in Houston thanks to a recent announcement from the government. Photo courtesy of Nuro

Self-driving delivery company with Houston pilots gets historic government approval for new model

hit the road

A California-based tech company has got the green light today to move forward a new line of autonomous vehicles that will soon hit Houston streets.

Nuro, which has a few self-driving delivery pilot programs across Houston, has been granted its exemption petition from the United States Department of Transportation's National Highway Traffic Safety Administration. This move is a first for DOT, and it allows Nuro to roll out its vehicles on public roads without the features of traditional, passenger-carrying vehicles — like side mirrors or windshields, for instance.

"Since this is a low-speed self-driving delivery vehicle, certain features that the Department traditionally required – such as mirrors and windshield for vehicles carrying drivers – no longer make sense," says U.S. Secretary of Transportation Elaine L. Chao in a news release.

Now, with this permission, Nuro has unveiled its newest model — the R2. The new model is more narrow than the R1, and has 65 percent more climate-controlled space for its food deliveries. The vehicle also has new safety features, like 360-degree vision using lidar, radar, and cameras and even has a pedestrian-protecting feature that enables the car to collapse on impact.

Image courtesy of Nuro

"We founded Nuro on the belief that we could reimagine, design, and develop an autonomous vehicle that would make the world a safer place," says Nuro co-founder and president, Dave Ferguson, in a release. "Our second-generation vehicle will advance our goal of transforming local commerce, and we are gratified that the Department of Transportation, under Secretary Chao's leadership, is promoting public safety and providing regulatory certainty for the self-driving industry."

The R2 models are being assembled in the U.S. with Nuro's partner, Roush Enterprises, which is based in Michigan. Per the NHTSA announcement, Nuro can deploy up to 5,000 R2 vehicles during the two-year exemption period. According to the DOT release, the organization will be monitoring Nuro's work throughout those two years.

"NHTSA is dedicated to facilitating the safe testing and deployment of advanced vehicle technologies, including innovative vehicle designs, which hold great promise for future safety improvements," says NHTSA Acting Administrator James Owens in the release. "As always, we will not hesitate to use defect authority to protect public safety as necessary."

Nuro currently has three pilot programs — all of which were announced last year. The company is working with Domino's, Kroger, and Walmart on food and grocery deliveries in six Houston ZIP codes. Since entering the Houston market, Nuro has been using its fleet of self-driving Prius vehicles to research and map the city's roads.

With this permission granted from DOT, Nuro can start making deliveries using its R2 fleet with its three retail and restaurant partners.

"Today's decision shows that 'exemption' can mean more safety," says Ferguson. "Our world-class team solved countless novel problems to create this design, and, after extensive modeling, research, and testing, created a vehicle unlike any other on the road today."

Photo courtesy of Nuro

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-area lab grows with focus on mobile diagnostics and predictive medicine

mobile medicine

When it comes to healthcare, access can be a matter of life and death. And for patients in skilled nursing facilities, assisted living or even their own homes, the ability to get timely diagnostic testing is not just a convenience, it’s a necessity.

That’s the problem Principle Health Systems (PHS) set out to solve.

Founded in 2016 in Clear Lake, Texas, PHS began as a conventional laboratory but quickly pivoted to mobile diagnostics, offering everything from core blood work and genetic testing to advanced imaging like ultrasounds, echocardiograms, and X-rays.

“We were approached by a group in a local skilled nursing facility to provide services, and we determined pretty quickly there was a massive need in this area,” says James Dieter, founder, chairman and CEO of PHS. “Turnaround time is imperative. These facilities have an incredibly sick population, and of course, they lack mobility to get the care that they need.”

What makes PHS unique is not only what they do, but where they do it. While they operate one of the largest labs serving skilled nursing facilities in the state, their mobile teams go wherever patients are, whether that’s a nursing home, a private residence or even a correctional facility.

Diagnostics, Dieter says, are at the heart of medical decision-making.

“Seventy to 80 percent of all medical decisions are made from diagnostic results in lab and imaging,” he says. “The diagnostic drives the doctor’s or the provider’s next move. When we recognized a massive slowdown in lab results, we had to innovate to do it faster.”

Innovation at PHS isn’t just about speed; it’s about accessibility and precision.

Chris Light, COO, explains: “For stat testing, we use bedside point-of-care instruments. Our phlebotomists take those into the facilities, test at the bedside, and get results within minutes, rather than waiting days for results to come back from a core lab.”

Scaling a mobile operation across multiple states isn’t simple, but PHS has expanded into nine states, including Texas, Oklahoma, Kansas, Missouri and Arizona. Their model relies on licensed mobile phlebotomists, X-ray technologists and sonographers, all trained to provide high-level care outside traditional hospital settings.

The financial impact for patients is significant. Instead of ambulance rides and ER visits costing thousands, PHS services often cost just a fraction, sometimes only tens or hundreds of dollars.

“Traditionally, without mobile diagnostics, the patient would be loaded into a transportation vehicle, typically an ambulance, and taken to a hospital,” Dieter says. “Our approach is a fraction of the cost but brings care directly to the patients.”

The company has also embraced predictive and personalized medicine, offering genetic tests that guide medication decisions and laboratory tests that predict cognitive decline from conditions like Alzheimer's and Parkinson’s.

“We actively look for complementary services to improve patient outcomes,” Dieter says. “Precision medicine and predictive testing have been a great value-add for our providers.”

Looking to the future, PHS sees mobile healthcare as part of a larger trend toward home-based care.

“There’s an aging population that still lives at home with caretakers,” Dieter explains. “We go into the home every day, whether it’s an apartment, a standalone home, or assisted living. The goal is to meet patients where they are and reduce the need for hospitalization.”

Light highlighted another layer of innovation: predictive guidance.

“We host a lot of data, and labs and imaging drive most treatment decisions,” Light says. “We’re exploring how to deploy diagnostics immediately based on results, eliminating hours of delay and keeping patients healthier longer.”

Ultimately, innovation at PHS isn’t just about technology; it’s about equity.

“There’s an 11-year life expectancy gap between major metro areas and rural Texas,” Dieter says. “Our innovation has been leveling the field, so everyone has access to high-quality diagnostics and care, regardless of where they live.”

Aegis Aerospace appoints Houston space leader as new president

moving up

Houston-based Aegis Aerospace's current chief strategy officer, Matt Ondler, will take on the additional role of president on Jan. 1. Ondler will succeed Bill Hollister, who is retiring.

“Matt's vision, experience, and understanding of our evolving markets position us to build on our foundation and pursue new frontiers,” Stephanie Murphy, CEO of Aegis Aerospace, said in a news release.

Hollister guided Aegis Aerospace through expansion and innovation in his three years as president, and will continue to serve in the role of chief technology officer (CTO) for six months and focus on the company's technical and intellectual property frameworks.

"Bill has played an instrumental role in shaping the success and growth of our company, and his contributions leave an indelible mark on both our culture and our achievements," Murphy said in a news release.

Ondler has a background in space hardware development and strategic leadership in government and commercial sectors. Ondler founded subsea robots and software company Houston Mechatronics, Inc., now known as Nauticus Robotics, and also served as president, CTO and CSO during a five-year tenure at Axiom Space. He held various roles in his 25 years at NASA and was also named to the Texas Aerospace Research and Space Economy Consortium Executive Committee last year.

"I am confident that with Matt at the helm as president and Bill supporting us as CTO, we will continue to build on our strong foundation and further elevate our impact in the space industry," Murphy said in a news release. "Matt's vision, experience, and understanding of our evolving markets position us to build on our foundation and pursue new frontiers."

Rice University launches new center to study roots of Alzheimer’s and Parkinson’s

neuro research

Rice University launched its new Amyloid Mechanism and Disease Center last month, which aims to uncover the molecular origins of Alzheimer’s, Parkinson’s and other amyloid-related diseases.

The center will bring together Rice faculty in chemistry, biophysics, cell biology and biochemistry to study how protein aggregates called amyloids form, spread and harm brain cells. It will serve as the neuroscience branch of the Rice Brain Institute, which was also recently established.

The team will work to ultimately increase its understanding of amyloid processes and will collaborate with the Texas Medical Center to turn lab discoveries into real progress for patients. It will hold its launch event on Jan. 21, 2026, and hopes to eventually be a launchpad for future external research funding.

The new hub will be led by Pernilla Wittung-Stafshed, a Rice biophysicist and the Charles W. Duncan Jr.-Welch Chair in Chemistry.

“To make a real difference, we have to go all the way and find a cure,” Wittung-Stafshede said in a news release. “At Rice, with the Amyloid Mechanism and Disease Center as a catalyst, we have the people and ideas to open new doors toward solutions.”

Wittung-Stafshede, who was recruited to Rice through a Cancer Prevention and Research Institute of Texas grant this summer, has led pioneering work on how metal-binding proteins impact neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases. Her most recent study, published in Advanced Science, suggests a new way of understanding how amyloids may harm cells and consume the brain’s energy molecule, ATP.

According to Alzheimer’s Disease International, neurodegenerative disease cases could reach around 78 million by 2030 and 139 million by 2050. Wittung-Stafshede’s father died of dementia several years ago.

“This is close to my heart,” Wittung-Stafshede added in the news release. “Neurodegenerative diseases such as dementia, Alzheimer’s and Parkinson’s are on the rise as people live longer, and age is the largest risk factor. It affects everyone.”