Texas A&M University-Fort Worth will be the home of the FAA's new Center for Advanced Aviation Technologies. Photo via Getty Images.

The Texas A&M University System will run the Federal Aviation Administration’s new Center for Advanced Aviation Technologies, which will focus on innovations like commercial drones.

“Texas is the perfect place for our new Center for Advanced Aviation Technologies,” U.S. Transportation Secretary Sean Duffy said in a release. “From drones delivering your packages to powered lift technologies like air taxis, we are at the cusp of an aviation revolution. The [center] will ensure we make that dream a reality and unleash American innovation safely.”

U.S. Sen. Ted Cruz, a Texas Republican, included creation of the center in the FAA Reauthorization Act of 2024. The center will consist of an airspace laboratory, flight demonstration zones, and testing corridors.

Texas A&M University-Corpus Christi will lead the initiative, testing unstaffed aircraft systems and other advanced technologies. The Corpus Christi campus houses the Autonomy Research Institute, an FAA-designated test site. The new center will be at Texas A&M University-Fort Worth.

The College Station-based Texas A&M system says the center will “bring together” its 19 institutions, along with partners such as the University of North Texas in Denton and Southern Methodist University in University Park.

According to a Department of Transportation news release, the center will play “a pivotal role” in ensuring the safe operation of advanced aviation technologies in public airspace.

The Department of Transportation says it chose the Texas A&M system to manage the new center because of its:

  • Proximity to major international airports and the FAA’s regional headquarters in Fort Worth
  • Existing infrastructure for testing of advanced aviation technologies
  • Strong academic programs and industry partnerships

“I’m confident this new research and testing center will help the private sector create thousands of high-paying jobs and grow the Texas economy through billions in new investments,” Cruz said.

“This is a significant win for Texas that will impact communities across our state,” the senator added, “and I will continue to pursue policies that create new jobs, and ensure the Lone Star State continues to lead the way in innovation and the manufacturing of emerging aviation technologies.”

This tiny “smart car” is a lot more powerful than you might think. Photo by Jon Burke/UH

University of Houston gets $2M to launch innovative transportation-focused cybersecurity center

traffic safety

The University of Houston is now leading a national consortium focused on cybersecurity in the transportation sector.

Known as the Transportation Cybersecurity Center for Advanced Research and Education, or CYBER-CARE, it's backed by a $2 million grant from U.S. Department of Transportation for its first year, with anticipated total federal funding of $10 million over five years, as part of the department's University Transportation Centers program that aims to address a number of topics in the field.

UH's center aims to "establish a fundamental knowledge base and explore advanced theories of how to best mitigate impacts of potential large-scale cyberattacks on transportation infrastructure," according to a release from the university. This includes protecting vehicle control systems, developing industry-wide best practices, responding to potential cyber incidents and introducing ways to recover quickly from cyber incidents in traffic networks.

CYBER-CARE is led by Yunpeng “Jack” Zhang, associate professor in the Department of Information Science Technology at the UH and director of the center.

"Our goal to make our intelligent transportation system (ITS) safer for all road users. That aligns well with the USDOT’s strategic goal of improving safety,” Zhang explained in a statement. “We also will promote interdisciplinary research and education across the transportation and cybersecurity domains.”

The center opened earlier this year within UH's Cullen College of Engineering’s Division of Technology. Houston and Texas colleges Rice University and Texas A&M University-Corpus Christi have joined the consortium with UH, along with Embry-Riddle Aeronautical University, University of Cincinnati and University of Hawai‘i at Mānoa.

The DOT's University Transportation Centers first launched in 1988 to conduct research. Support has ebbed and flowed over the years, but has seen some uptick recently. The Biden Administration's 2021 Bipartisan Infrastructure Law authorized 35 UTCs to receive a total of $90 million in funding from 2022 to 2026 to address issues like traffic congestion, safety, infrastructure durability and cybersecurity risks.

According to the DOT's website there are other Texas UTCs at University of Texas at Austin, University of Texas Arlington, Texas A&M University College Station, Prairie View A&M University and Texas State University.

Last year, Texas A&M also launched a new institute for research and education regarding cybersecurity. The Global Cyber Research Institute was funded by $10 million in gifts from former Texas A&M student Ray Rothrock, a venture capitalist and cybersecurity expert, and other donors.

Nuro is now able to roll out its new model of self-driving vehicles in Houston thanks to a recent announcement from the government. Photo courtesy of Nuro

Self-driving delivery company with Houston pilots gets historic government approval for new model

hit the road

A California-based tech company has got the green light today to move forward a new line of autonomous vehicles that will soon hit Houston streets.

Nuro, which has a few self-driving delivery pilot programs across Houston, has been granted its exemption petition from the United States Department of Transportation's National Highway Traffic Safety Administration. This move is a first for DOT, and it allows Nuro to roll out its vehicles on public roads without the features of traditional, passenger-carrying vehicles — like side mirrors or windshields, for instance.

"Since this is a low-speed self-driving delivery vehicle, certain features that the Department traditionally required – such as mirrors and windshield for vehicles carrying drivers – no longer make sense," says U.S. Secretary of Transportation Elaine L. Chao in a news release.

Now, with this permission, Nuro has unveiled its newest model — the R2. The new model is more narrow than the R1, and has 65 percent more climate-controlled space for its food deliveries. The vehicle also has new safety features, like 360-degree vision using lidar, radar, and cameras and even has a pedestrian-protecting feature that enables the car to collapse on impact.

Image courtesy of Nuro

"We founded Nuro on the belief that we could reimagine, design, and develop an autonomous vehicle that would make the world a safer place," says Nuro co-founder and president, Dave Ferguson, in a release. "Our second-generation vehicle will advance our goal of transforming local commerce, and we are gratified that the Department of Transportation, under Secretary Chao's leadership, is promoting public safety and providing regulatory certainty for the self-driving industry."

The R2 models are being assembled in the U.S. with Nuro's partner, Roush Enterprises, which is based in Michigan. Per the NHTSA announcement, Nuro can deploy up to 5,000 R2 vehicles during the two-year exemption period. According to the DOT release, the organization will be monitoring Nuro's work throughout those two years.

"NHTSA is dedicated to facilitating the safe testing and deployment of advanced vehicle technologies, including innovative vehicle designs, which hold great promise for future safety improvements," says NHTSA Acting Administrator James Owens in the release. "As always, we will not hesitate to use defect authority to protect public safety as necessary."

Nuro currently has three pilot programs — all of which were announced last year. The company is working with Domino's, Kroger, and Walmart on food and grocery deliveries in six Houston ZIP codes. Since entering the Houston market, Nuro has been using its fleet of self-driving Prius vehicles to research and map the city's roads.

With this permission granted from DOT, Nuro can start making deliveries using its R2 fleet with its three retail and restaurant partners.

"Today's decision shows that 'exemption' can mean more safety," says Ferguson. "Our world-class team solved countless novel problems to create this design, and, after extensive modeling, research, and testing, created a vehicle unlike any other on the road today."

Photo courtesy of Nuro

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Elon Musk vows to launch solar-powered data centers in space

To Outer Space

Elon Musk vowed this week to upend another industry just as he did with cars and rockets — and once again he's taking on long odds.

The world's richest man said he wants to put as many as a million satellites into orbit to form vast, solar-powered data centers in space — a move to allow expanded use of artificial intelligence and chatbots without triggering blackouts and sending utility bills soaring.

To finance that effort, Musk combined SpaceX with his AI business on Monday, February 2, and plans a big initial public offering of the combined company.

“Space-based AI is obviously the only way to scale,” Musk wrote on SpaceX’s website, adding about his solar ambitions, “It’s always sunny in space!”

But scientists and industry experts say even Musk — who outsmarted Detroit to turn Tesla into the world’s most valuable automaker — faces formidable technical, financial and environmental obstacles.

Feeling the heat

Capturing the sun’s energy from space to run chatbots and other AI tools would ease pressure on power grids and cut demand for sprawling computing warehouses that are consuming farms and forests and vast amounts of water to cool.

But space presents its own set of problems.

Data centers generate enormous heat. Space seems to offer a solution because it is cold. But it is also a vacuum, trapping heat inside objects in the same way that a Thermos keeps coffee hot using double walls with no air between them.

“An uncooled computer chip in space would overheat and melt much faster than one on Earth,” said Josep Jornet, a computer and electrical engineering professor at Northeastern University.

One fix is to build giant radiator panels that glow in infrared light to push the heat “out into the dark void,” says Jornet, noting that the technology has worked on a small scale, including on the International Space Station. But for Musk's data centers, he says, it would require an array of “massive, fragile structures that have never been built before.”

Floating debris

Then there is space junk.

A single malfunctioning satellite breaking down or losing orbit could trigger a cascade of collisions, potentially disrupting emergency communications, weather forecasting and other services.

Musk noted in a recent regulatory filing that he has had only one “low-velocity debris generating event" in seven years running Starlink, his satellite communications network. Starlink has operated about 10,000 satellites — but that's a fraction of the million or so he now plans to put in space.

“We could reach a tipping point where the chance of collision is going to be too great," said University at Buffalo's John Crassidis, a former NASA engineer. “And these objects are going fast -- 17,500 miles per hour. There could be very violent collisions."

No repair crews

Even without collisions, satellites fail, chips degrade, parts break.

Special GPU graphics chips used by AI companies, for instance, can become damaged and need to be replaced.

“On Earth, what you would do is send someone down to the data center," said Baiju Bhatt, CEO of Aetherflux, a space-based solar energy company. "You replace the server, you replace the GPU, you’d do some surgery on that thing and you’d slide it back in.”

But no such repair crew exists in orbit, and those GPUs in space could get damaged due to their exposure to high-energy particles from the sun.

Bhatt says one workaround is to overprovision the satellite with extra chips to replace the ones that fail. But that’s an expensive proposition given they are likely to cost tens of thousands of dollars each, and current Starlink satellites only have a lifespan of about five years.

Competition — and leverage

Musk is not alone trying to solve these problems.

A company in Redmond, Washington, called Starcloud, launched a satellite in November carrying a single Nvidia-made AI computer chip to test out how it would fare in space. Google is exploring orbital data centers in a venture it calls Project Suncatcher. And Jeff Bezos’ Blue Origin announced plans in January for a constellation of more than 5,000 satellites to start launching late next year, though its focus has been more on communications than AI.

Still, Musk has an edge: He's got rockets.

Starcloud had to use one of his Falcon rockets to put its chip in space last year. Aetherflux plans to send a set of chips it calls a Galactic Brain to space on a SpaceX rocket later this year. And Google may also need to turn to Musk to get its first two planned prototype satellites off the ground by early next year.

Pierre Lionnet, a research director at the trade association Eurospace, says Musk routinely charges rivals far more than he charges himself —- as much as $20,000 per kilo of payload versus $2,000 internally.

He said Musk’s announcements this week signal that he plans to use that advantage to win this new space race.

“When he says we are going to put these data centers in space, it’s a way of telling the others we will keep these low launch costs for myself,” said Lionnet. “It’s a kind of powerplay.”

Johnson Space Center and UT partner to expand research, workforce development

onward and upward

NASA’s Johnson Space Center in Houston has forged a partnership with the University of Texas System to expand collaboration on research, workforce development and education that supports space exploration and national security.

“It’s an exciting time for the UT System and NASA to come together in new ways because Texas is at the epicenter of America’s space future. It’s an area where America is dominant, and we are committed as a university system to maintaining and growing that dominance,” Dr. John Zerwas, chancellor of the UT System, said in a news release.

Vanessa Wyche, director of Johnson Space Center, added that the partnership with the UT System “will enable us to meet our nation’s exploration goals and advance the future of space exploration.”

The news release noted that UT Health Houston and the UT Medical Branch in Galveston already collaborate with NASA. The UT Medical Branch’s aerospace medicine residency program and UT Health Houston’s space medicine program train NASA astronauts.

“We’re living through a unique moment where aerospace innovation, national security, economic transformation, and scientific discovery are converging like never before in Texas," Zerwas said. “UT institutions are uniquely positioned to partner with NASA in building a stronger and safer Texas.”

Zerwas became chancellor of the UT System in 2025. He joined the system in 2019 as executive vice chancellor for health affairs. Zerwas represented northwestern Ford Bend County in the Texas House from 2007 to 2019.

In 1996, he co-founded a Houston-area medical practice that became part of US Anesthesia Partners in 2012. He remained active in the practice until joining the UT System. Zerwas was chief medical officer of the Memorial Hermann Hospital System from 2003 to 2008 and was its chief physician integration officer until 2009.

Zerwas, a 1973 graduate of the Houston area’s Bellaire High School, is an alumnus of the University of Houston and Baylor College of Medicine.