Houston — home to the Texas Medical Center — has made the cut for top life science metros. Photo via Getty Images

Of the top 25 United States metros ranked as the best for life science, Houston came in at lucky No. 13.

CommercialCafe issued a report this month ranking the top 25 U.S. cities for life science, factoring in volume of life science patents, number of life science establishments, size of workforce, educational institutions, office market, and more.

Houston stood out on the report for a few metrics. It might not be surprising, as Houston is home to the world's largest medical center, but the city boasts the 10th largest workforce with 5,100 workers employed in industry related occupations, the report found. Additionally, the city ranked:

  • No. 8 for life science education — more than 860,000 area residents aged 25 years or older hold a bachelor’s degree in an industry related field.
  • No. 9 for life science establishments — which has increased 23 percent since 2018 to a total of nearly 3,300.
  • No. 9 for life science square footage added — with roughly 840,000 square feet of new life sciences projects currently in development

As positive as the report finds Houston's life science market, the ranking represents a decrease in ranking compared to 2022 where Houston scored a spot in the top 10. In fact, Houston can't even claim the top spot in the Lone Star State. No Texas cities made the top 10, but the Dallas area secured the No. 11 ranking. Dallas was also ranked highly for its talent pool.

Meanwhile in central Texas, Austin claimed the No. 22 spot. The full ranking is below.

www.commercialcafe.com

Conveniently, CBRE, which also ranks the top life science markets every year, agrees with CommercialCafe's ranking of Houston. The 2023 report placed Houston at No. 13, which is exactly where the Bayou City ranked in 2022. However, according to CBRE, Houston ranks ahead of Dallas and Austin, which both still claimed rankings in the top 25.

The Bayou City also ranks as the No. 1 life science market in the state.  Photo by Dwight C. Andrews/Greater Houston Convention and Visitors Bureau

Report: Houston ranks in the top 10 life sciences markets in the U.S.

rising star

Houston has received a big thumbs-up in a new study ranking the country’s top metro areas for life sciences companies to launch or grow.

The study, published by commercial real estate platform CommercialCafe, puts Houston at No. 10 among the top U.S. metros in the life sciences sector and No. 1 in Texas. Boston topped CommercialCafe’s ranking, with Dallas-Fort Worth at No. 16, San Antonio at No. 29, and Austin at No. 37.

For the study, CommercialCafe examined various factors that support the success of a life sciences ecosystem. The study encompassed 45 major metros in the U.S. Among the highlights for Houston:

  • No. 9 ranking for educational attainment, with 733,577 of residents ages 25 year and older holding at least a bachelor’s degree in science, engineering, or an engineering-related field.
  • No. 12 ranking for life sciences projects under development (a little over 817,000 square feet). Overall, the life sciences sector occupies roughly 2.3 million square feet in the Houston area.

Last month, commercial real estate services company CBRE put Houston at No. 13 among the country’s top 25 clusters for life sciences research talent. DFW appeared at No. 16 and Austin at No. 18.

In assessing Houston’s strength in life sciences, CommercialCafe says that “the resilient Texas powerhouse was lifted by the wave of emerging life sciences clusters across the U.S.”

Two major projects are helping Houston maintain that powerhouse status. The Texas Medical Center (TMC) last year unveiled TMC3, a 37-acre, roughly 6 million-square-foot life sciences campus, and Houston-based Hines recently topped out the 270,000-square-foot first phase of the 53-acre Levit Green life sciences district next to TMC.

“Houston is already fortunate to have such a strong healthcare and higher education ecosystem. The TMC3 project stands to be the cornerstone of our regional life sciences strategy. It will create new jobs, [and] advance innovative medical technologies and healthcare solutions,” Houston Mayor Sylvester Turner said in 2021.

According to Greater Houston Partnership data, the Houston area is home to Houston has more than 1,760 life sciences companies, hospitals, health care facilities, and research institutions. Collectively, the life sciences and healthcare sectors employ 320,500 people in the region.

Women in science, technology, engineering, and mathematics are well represented in Houston, according to a recent report. Photo via Christina Morillo/Pexels

Houston named a top city for women in STEM fields

who runs the world?

If you're a woman in science, technology, engineering, or mathematics and you call Houston home, according to a new report, you're doing it right.

In honor of Women's History Month, CommercialCafe updated its 2020 ranking of the top U.S. cities for women working in STEM. According to the report, Houston ranks at No. 5 on the list of the best southern cities in the United States for women in STEM. The Bayou City also claims the No. 19 spot nationally.

Here are some other key findings about Houston on the report:

  • STEM jobs in Houston account for 7 percent of all jobs, and a little less than a third of these positions are held by women.
  • About 23,964 women work in STEM in Houston — which is the most out of any other city in the South.
  • Houston gained 4,318 new women STEM employees since 2015, the third-highest number in this regional ranking.
  • The median annual income for women in STEM here is $68,172.
Texas makes up about half of the top 10 Southern states — Austin places in second, while Frisco (No. 7), Dallas (No. 8) and Plano (No. 10) fall behind Houston. Nationally, New York City, San Francisco, and Seattle take the top three spots, respectively.

Women working in STEM - South 2021 - Infograminfogram.com

Houston has been recognized for its STEM fields before, and last fall, SmartAsset ranked Houston as No. 7 in STEM nationally based on workforce size. And, in 2019, Houston placed sixth for STEM workforce diversity. Last year Houston also ranked No. 6 for women in tech, also according to SmartAsset.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Greentown Labs names Lawson Gow as its new Houston leader

head of hou

Greentown Labs has named Lawson Gow as its Head of Houston.

Gow is the founder of The Cannon, a coworking space with seven locations in the Houston area, with additional partner spaces. He also recently served as managing partner at Houston-based investment and advisory firm Helium Capital. Gow is the son of David Gow, founder of Energy Capital's parent company, Gow Media.

According to Greentown, Gow will "enhance the founder experience, cultivate strategic partnerships, and accelerate climatetech solutions" in his new role.

“I couldn’t be more excited to join Greentown at this critical moment for the energy transition,” Gow said in a news release. “Greentown has a fantastic track record of supporting entrepreneurs in Houston, Boston, and beyond, and I am eager to keep advancing our mission in the energy transition capital of the world.”

Gow has also held analyst, strategy and advising roles since graduating from Rice University.

“We are thrilled to welcome Lawson to our leadership team,” Georgina Campbell Flatter, CEO of Greentown Labs, added in the release. “Lawson has spent his career building community and championing entrepreneurs, and we look forward to him deepening Greentown’s support of climate and energy startups as our Head of Houston.”

Gow is the latest addition to a series of new hires at Greentown Labs following a leadership shakeup.

Flatter was named as the organization's new CEO in February, replacing Kevin Dutt, Greentown’s interim CEO, who replaced Kevin Knobloch after he announced that he would step down in July 2024 after less than a year in the role.

Greentown also named Naheed Malik its new CFO in January.

Timmeko Moore Love was named the first Houston general manager and senior vice president of Greentown Labs. According to LinkedIn, she left the role in January.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston foundation grants $27M to support Texas chemistry research

fresh funding

Houston-based The Welch Foundation has doled out $27 million in its latest round of grants for chemical research, equipment and postdoctoral fellowships.

According to a June announcement, $25.5 million was allocated for the foundation's longstanding research grants, which provide $100,000 per year in funding for three years to full-time, regular tenure or tenure-track faculty members in Texas. The foundation made 85 grants to faculty at 16 Texas institutions for 2025, including:

  • Michael I. Jacobs, assistant professor in the chemistry and biochemistry department at Texas State University, who is investigating the structure and thermodynamics of intrinsically disordered proteins, which could "reveal clues about how life began," according to the foundation.
  • Kendra K. Frederick, assistant professor in the biophysics department at The University of Texas Southwestern Medical Center, who is studying a protein linked to Parkinson’s disease.
  • Jennifer S. Brodbelt, professor in chemistry at The University of Texas at Austin, who is testing a theory called full replica symmetry breaking (fullRSB) on glass-like materials, which has implications for complex systems in physics, chemistry and biology.

Additional funding will be allocated to the Welch Postdoctoral Fellows of the Life Sciences Research Foundation. The program provides three-year fellowships to recent PhD graduates to support clinical research careers in Texas. Two fellows from Rice University and Baylor University will receive $100,000 annually for three years.

The Welch Foundation also issued $975,000 through its equipment grant program to 13 institutions to help them develop "richer laboratory experience(s)." The universities matched funds of $352,346.

Since 1954, the Welch Foundation has contributed over $1.1 billion for Texas-nurtured advancements in chemistry through research grants, endowed chairs and other chemistry-related ventures. Last year, the foundation granted more than $40.5 million in academic research grants, equipment grants and fellowships.

“Through funding basic chemical research, we are actively investing in the future of humankind,” Adam Kuspa, president of The Welch Foundation, said the news release. “We are proud to support so many talented researchers across Texas and continue to be inspired by the important work they complete every day.”

New Houston biotech co. developing capsules for hard-to-treat tumors

biotech breakthroughs

Houston company Sentinel BioTherapeutics has made promising headway in cancer immunotherapy for patients who don’t respond positively to more traditional treatments. New biotech venture creation studio RBL LLC (pronounced “rebel”) recently debuted the company at the 2025 American Society of Clinical Oncology (ASCO) Annual Meeting in Chicago.

Rima Chakrabarti is a neurologist by training. Though she says she’s “passionate about treating the brain,” her greatest fervor currently lies in leading Sentinel as its CEO. Sentinel is RBL’s first clinical venture, and Chakrabarti also serves as cofounder and managing partner of the venture studio.

The team sees an opportunity to use cytokine interleukin-2 (IL-2) capsules to fight many solid tumors for which immunotherapy hasn't been effective in the past. “We plan to develop a pipeline of drugs that way,” Chakrabarti says.

This may all sound brand-new, but Sentinel’s research goes back years to the work of Omid Veiseh, director of the Rice Biotechnology Launch Pad (RBLP). Through another, now-defunct company called Avenge Bio, Veiseh and Paul Wotton — also with RBLP and now RBL’s CEO and chairman of Sentinel — invested close to $45 million in capital toward their promising discovery.

From preclinical data on studies in mice, Avenge was able to manufacture its platform focused on ovarian cancer treatments and test it on 14 human patients. “That's essentially opened the door to understanding the clinical efficacy of this drug as well as it's brought this to the attention of the FDA, such that now we're able to continue that conversation,” says Chakrabarti. She emphasizes the point that Avenge’s demise was not due to the science, but to the company's unsuccessful outsourcing to a Massachusetts management team.

“They hadn't analyzed a lot of the data that we got access to upon the acquisition,” explains Chakrabarti. “When we analyzed the data, we saw this dose-dependent immune activation, very specific upregulation of checkpoints on T cells. We came to understand how effective this agent could be as an immune priming agent in a way that Avenge Bio hadn't been developing this drug.”

Chakrabarti says that Sentinel’s phase II trials are coming soon. They’ll continue their previous work with ovarian cancer, but Chakrabarti says that she also believes that the IL-2 capsules will be effective in the treatment of endometrial cancer. There’s also potential for people with other cancers located in the peritoneal cavity, such as colorectal cancer, gastrointestinal cancer and even primary peritoneal carcinomatosis.

“We're delivering these capsules into the peritoneal cavity and seeing both the safety as well as the immune activation,” Chakrabarti says. “We're seeing that up-regulation of the checkpoint that I mentioned. We're seeing a strong safety signal. This drug was very well-tolerated by patients where IL-2 has always had a challenge in being a well-tolerated drug.”

When phase II will take place is up to the success of Sentinel’s fundraising push. What we do know is that it will be led by Amir Jazaeri at MD Anderson Cancer Center. Part of the goal this summer is also to create an automated cell manufacturing process and prove that Sentinel can store its product long-term.

“This isn’t just another cell therapy,” Chakrabarti says.

"Sentinel's cytokine factory platform is the breakthrough technology that we believe has the potential to define the next era of cancer treatment," adds Wotton.