The next phase of the Houston Spaceport will build out connectivity and workforce training. Rendering via Houston Airports

Since the Houston Spaceport secured the 10th FAA-Licensed commercial spaceport designation in 2015, the development's tenants have gone on to secure billions in NASA contracts. Now, the Houston Spaceport is on to its next phase of growth.

“Reflecting on its meteoric rise, the Spaceport has seen remarkable growth in a short span of time. From concepts on paper to the opening of Axiom Space, Collins Aerospace, and Intuitive Machines, the journey has been nothing short of extraordinary,” says Arturo Machuca, director of Ellington Airport and the Houston Spaceport, in a news release. “These anchor tenants, collectively holding about $5 billion in contracts with NASA and other notable aerospace companies, are not just shaping the future of space exploration but injecting vitality into Houston’s economy.”

The next phase of development, according to Houston Airports, will include:

  • The construction of a taxiway to connect Ellington Airport and the Spaceport
  • The construction of a roadway linking Phase 1 infrastructure to Highway 3
  • The expansion of the EDGE Center, in partnership with San Jacinto College

Rendering via Houston Airports

The Houston Spaceport's first phase completed in 2019. Over the past few years, tenants delivered on their own buildouts. Last year, Intuitive Machines moved into its new $40 million headquarters and Axiom Space opened its test facility. In 2022, Collins Aerospace cut the ribbon on its new 120,000 square-foot facility.

“The vision for the Houston Spaceport has always been ambitious,” says Jim Szczesniak, director of Aviation for Houston Airports. “Our vision is to create a hub for aviation and aerospace enterprises that will shape the future of commercial spaceflight.”

Educational partners have also revealed new spaces, including San Jacinto College's EDGE Center, which broke ground in July of 2019, finally celebrated its grand opening in 2021. Last year, Texas Southern University got the greenlight to operate an aeronautical training hub on a two-acre site at Ellington Airport.

“By providing the education and training needed to sustain jobs in the rapidly evolving space industry, the Spaceport is not only attracting companies but also nurturing the talent that will drive Houston's aerospace sector forward,” continues Szczesniak in the release.

Prada is collaborating with Houston-based aerospace company Axiom Space on the design of spacesuits for NASA’s Artemis III mission to the moon. Photo via axiomspace.com

Houston company collaborates with major fashion designer for spacesuit project

astronaut couture

Courtesy of the Prada luxury brand, NASA astronauts are getting an infusion of fashion.

Prada is collaborating with Houston-based aerospace company Axiom Space on the design of spacesuits for NASA’s Artemis III mission to the moon. Astronauts haven’t yet been chosen for the mission, which is set for 2025.

“Prada’s technical expertise with raw materials, manufacturing techniques, and innovative design concepts will bring advanced technologies instrumental in ensuring not only the comfort of astronauts on the lunar surface, but also the much-needed human factors considerations absent from legacy spacesuits,” says Michael Suffredini, co-founder, president, and CEO of Axiom Space.

The spacesuit, called the Axiom Extravehicular Mobility Unit (AxEMU), is geared toward improving astronauts’ flexibility, boosting protection against harsh conditions, and supplying tools for exploration and scientific activities.

“Our decades of experimentation, cutting-edge technology, and design know-how – which started back in the ’90s with Luna Rossa challenging for the America’s Cup – will now be applied to the design of a spacesuit for the Artemis era. It is a true celebration of the power of human creativity and innovation to advance civilization,” says Lorenzo Bertelli, marketing director of the Prada brand.

NASA has enlisted Axiom and Charlotte, North Carolina-based Collins Aerospace to outfit astronauts with next-generation spacesuits. Axiom’s partners on this project are KBR and Sophic Synergistics, both based in Houston, along with Air-Lock, A-P-T Research, Arrow Science and Technology, David Clark Co., and Paragon Space Development.

Collins maintains a sizable presence at the Houston Spaceport.

In July, Axiom secured a NASA task order potentially worth $147 million to modify the Artemis III spacesuit for astronauts heading to the International Space Station. This follows a $228 million NASA task order awarded to Axiom in 2022 for development of the Artemis III spacesuit.

The task orders are part of Axiom’s $1.26 billion spacesuit contract with NASA. All told, NASA has earmarked as much as $3.5 billion for new spacesuits.

For its return to the moon, NASA has doubled down on its relationships with two companies in Houston. Photo courtesy of NASA

NASA expands spacesuit partnerships with 2 Houston tech companies in $5M deals

getting ready to moon walk

Two Houston space tech companies are suiting up thanks to an expanded relationship with NASA.

Axiom Space and Collins Aerospace, which have been working with NASA developing new spacesuits since last summer, have each received $5 million to continue their work. The new spacesuits will be used in NASA's upcoming Artemis missions. Axiom Space, which unveiled its design in March, is creating a suit that will be used in low Earth orbit, and Collins Aerospace, headquartered in Charlotte, North Carolina, but with a significant presence in Houston, will build a suit that will be worn on the lunar surface.

“These task orders position NASA for success should additional capabilities become necessary or advantageous to NASA’s missions as the agency paves the way for deep space exploration and commercialization of low Earth orbit,” says Lara Kearney, manager of the Extravehicular Activity and Human Surface Mobility Program at the Johnson Space Center, in a news release. “Using this competitive approach we will enhance redundancy, expand future capabilities, and further invest in the space economy.”

The spacesuit, revealed in March, will be worn by the first woman and first person of color to visit the moon. Photo courtesy of Axiom Space

These two new Exploration Extravehicular Activity Services task orders are being issued due to an increased capability request.

"Axiom Space was previously awarded an initial task order to develop a spacewalking system for a demonstration in partial gravity on the lunar surface during Artemis III and will now begin early assessments for extending that suit for use outside the International Space Station," reads the NASA news release. "Likewise, Collins Aerospace was previously awarded an initial task order to develop a spacewalking system for a demonstration in microgravity outside the space station and will now begin early assessments for extending that suit for use on the lunar surface."

Each part of the missions — low Earth orbit and the lunar surface — come with their own set of challenges, including variation in gravitational fields, environments, and mission tasks. These suits will potentially be used throughout the lunar missions through 2034.

NASA has issued another grant to Collins Aerospace to design the future of spacewalks and moonwalks. Image via NASA

Aerospace company tapped for mission for new spacewalk, moonwalk system

in the works

Charlotte, North Carolina-based Collins Aerospace has been selected by NASA to develop a spacewalking system for the astronauts aboard the International Space Station.

The award, which is the second under NASA’s Exploration EVA Services contract, has a base value of $97.2 million, per a Dec. 8 news release from NASA. The company has until January 2024 "to complete a critical design review and demonstrate use of the suit on Earth in a simulated space environment," according to NASA, which will then decide the option to extend the contract for testing to be conducted by April 2026.

NASA’s Johnson Space Center in Houston manages the spacesuit contract. Collins Aerospace has had a presence in Houston for 40 years, and recently cut the ribbon on a $30 million facility near the JSC.

“We look forward to obtaining another much-needed service under our contract,” says Lara Kearney, manager of the Extravehicular Activity and Human Surface Mobility Program at JSC, in the release. “By working with industry, NASA is able to continue its over 22-year legacy of maintaining a presence in low-Earth orbit.”

The current system was designed decades ago and has been used during previous space shuttle and space station missions. Collins Aerospace will work with Houston-based Axiom Space on this project, which was initially announced this summer.

"Both vendors will continue to compete for future task orders which include recurring services for station spacewalks and moonwalks beyond Artemis III," the news release reads.

Space experts discussed the city's role in the space industry at a recent event. Photo via NASA

Overheard: Houston needs to strengthen infrastructure, workforce to maintain Space City status

eavesdropping in houston

In no time at all, humans will return to the moon and as they make the first spacewalks in fifty years — wearing suits designed in Houston — they will call down to earth, and only one city in the world will be named on the radio transmissions.

Houston is the Space City — but what will it take to maintain that moniker? This was a big topic of the Greater Houston Partnership's second annual State of Space event hosted on Tuesday, October 11.

A diverse and impressive panel discussed the Space City's future, the upcoming moon missions, commercializations, and more. If you missed the discussion, check out some key moments from the event.

"Houston has a significant role in all areas of Artemis."

— Vanessa Wyche, director of NASA's Johnson Space Center. "We have crew missions, robotic missions, and other technologies that will make up Artemis."

"The big mission we have is for Houston to remain the hub in human space flight moving forward."

— Wyche says, adding "for us to be the nexus and accelerator of research, innovation, and STEM, we need to work together for workforce development for the space economy."

"We're at a point were we can pivot to develop scalable products at a much lower cost — it really reduces the barrier of entry for commercial space partners."

— Peggy Guirgis, general manager of space systems for Collins Aerospace. "We're building in Houston because this is really an engineering hub," she adds, noting the industries and schools here that support the industry.

"Why Houston? Because of, more than anything, the sense of community."

— Steve Altemus, president and CEO of Intuitive Machines, noting the support behind building the Houston Spaceport and the existing Johnson Space Center, as well as all the other players within the space sector locally.

"At some point in the very near future we are going to land humans on the moon — the first woman on the moon, the first person of color on the moon — and we're going to say, 'Moon, Houston.' This is the only city in the world that's going to be said on those loops."

— Kate Rubins, NASA astronaut. "I feel very fortunate to be here."

"Right here in Houston — at the HoustonSpaceport, we're building a space where the Space Force can do classified work."

— Altemus says. "That's one area that I'd like to see grow."

"We need to continue to build a talent pipeline as well as generating a workforce that is able to keep pace with the rapidly growing space industry."

— Guirgis says.

"When people think about Houston, NASA has been the nexus and center of gravity, but all of Houston has been a magnet. It's a draw to come and work here."

— Rubins says. "One way to continue this is through infrastructure that's being built here — it's incredible. It's going to cement this as a place that you want to come if you're a commercial company and you want to partner with NASA, or you want to be a contractor for one of these other companies. ... And the startup scene is booming these days in Houston."

"We need to make sure that we have the world-class capabilities."

— Wyche says. "The workforce is so very important."

Collins Aerospace celebrated the opening of its new facility this week. Image courtesy of Collins Aerospace

Aerospace company opens new $30M Houston Spaceport location, plans to move in

new digs

Collins Aerospace has cut the ribbon on its new 120,000 square-foot facility located at the Houston Spaceport in Houston — all that's left for the global aerospace and defense company is to move in.

“Collins’ long history of innovating, developing and delivering the critical systems that have played an integral role in humankind’s exploration of space takes yet another step forward with the opening of this state-of-the-art facility at the Houston Spaceport,” says Phil Jasper, president of Collins Aerospace’s Mission Systems business, in a news release.

“This strategic location and our strong local partnerships are driving the next-generation technologies that will enable humankind to live, work and play in space,” he continues.

The new, $30 million facility for Charlotte, North Carolina-based Collins Aerospace, will feature 10,000 square feet dedicated to an incubator supporting aerospace startups.

The unique spaceflight incubator, which was announced to receive up to $25.6 million in financing from Houston Airports for capital improvements, be a place where startups, universities and industry professionals can collaborate using robotics, medicine, additive manufacturing, and more to solve complex space technology challenges.

“The expansion of Collins Aerospace at the Houston Spaceport is a crucial next step in the city’s journey to be the country’s premier next-generation aerospace and technical hub,” says Houston Mayor Sylvester Turner in the release.

“The innovative technologies created at this facility will also serve as the critical systems to support humankind’s future space exploration and habitation. We look forward to fueling the future of aerospace right here in Houston,” he continues.

Collins, which has had a presence in Houston for around 40 years, announced the new facility after reaching capacity at its other location. The expanded operations will add an additional 300 jobs in the coming years.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston wearable biosensing company closes $13M pre-IPO round

fresh funding

Wellysis, a Seoul, South Korea-headquartered wearable biosensing company with its U.S. subsidiary based in Houston, has closed a $13.5 million pre-IPO funding round and plans to expand its Texas operations.

The round was led by Korea Investment Partners, Kyobo Life Insurance, Kyobo Securities, Kolon Investment and a co-general partner fund backed by SBI Investment and Samsung Securities, according to a news release.

Wellysis reports that the latest round brings its total capital raised to about $30 million. The company is working toward a Korea Securities Dealers Automated Quotations listing in Q4 2026 or Q1 2027.

Wellysis is known for its continuous ECG/EKG monitor with AI reporting. Its lightweight and waterproof S-Patch cardiac monitor is designed for extended testing periods of up to 14 days on a single battery charge.

The company says that the funding will go toward commercializing the next generation of the S-Patch, known as the S-Patch MX, which will be able to capture more than 30 biometric signals, including ECG, temperature and body composition.

Wellysis also reports that it will use the funding to expand its Houston-based operations, specifically in its commercial, clinical and customer success teams.

Additionally, the company plans to accelerate the product development of two other biometric products:

  • CardioAI, an AI-powered diagnostic software platform designed to support clinical interpretation, workflow efficiency and scalable cardiac analysis
  • BioArmour, a non-medical biometric monitoring solution for the sports, public safety and defense sectors

“This pre-IPO round validates both our technology and our readiness to scale globally,” Young Juhn, CEO of Wellysis, said in the release. “With FDA-cleared solutions, expanding U.S. operations, and a strong AI roadmap, Wellysis is positioned to redefine how cardiac data is captured, interpreted, and acted upon across healthcare systems worldwide.”

Wellysis was founded in 2019 as a spinoff of Samsung. Its S-Patch runs off of a Samsung Smart Health Processor. The company's U.S. subsidiary, Wellysis USA Inc., was established in Houston in 2023 and was a resident of JLABS@TMC.

Elon Musk vows to launch solar-powered data centers in space

To Outer Space

Elon Musk vowed this week to upend another industry just as he did with cars and rockets — and once again he's taking on long odds.

The world's richest man said he wants to put as many as a million satellites into orbit to form vast, solar-powered data centers in space — a move to allow expanded use of artificial intelligence and chatbots without triggering blackouts and sending utility bills soaring.

To finance that effort, Musk combined SpaceX with his AI business on Monday, February 2, and plans a big initial public offering of the combined company.

“Space-based AI is obviously the only way to scale,” Musk wrote on SpaceX’s website, adding about his solar ambitions, “It’s always sunny in space!”

But scientists and industry experts say even Musk — who outsmarted Detroit to turn Tesla into the world’s most valuable automaker — faces formidable technical, financial and environmental obstacles.

Feeling the heat

Capturing the sun’s energy from space to run chatbots and other AI tools would ease pressure on power grids and cut demand for sprawling computing warehouses that are consuming farms and forests and vast amounts of water to cool.

But space presents its own set of problems.

Data centers generate enormous heat. Space seems to offer a solution because it is cold. But it is also a vacuum, trapping heat inside objects in the same way that a Thermos keeps coffee hot using double walls with no air between them.

“An uncooled computer chip in space would overheat and melt much faster than one on Earth,” said Josep Jornet, a computer and electrical engineering professor at Northeastern University.

One fix is to build giant radiator panels that glow in infrared light to push the heat “out into the dark void,” says Jornet, noting that the technology has worked on a small scale, including on the International Space Station. But for Musk's data centers, he says, it would require an array of “massive, fragile structures that have never been built before.”

Floating debris

Then there is space junk.

A single malfunctioning satellite breaking down or losing orbit could trigger a cascade of collisions, potentially disrupting emergency communications, weather forecasting and other services.

Musk noted in a recent regulatory filing that he has had only one “low-velocity debris generating event" in seven years running Starlink, his satellite communications network. Starlink has operated about 10,000 satellites — but that's a fraction of the million or so he now plans to put in space.

“We could reach a tipping point where the chance of collision is going to be too great," said University at Buffalo's John Crassidis, a former NASA engineer. “And these objects are going fast -- 17,500 miles per hour. There could be very violent collisions."

No repair crews

Even without collisions, satellites fail, chips degrade, parts break.

Special GPU graphics chips used by AI companies, for instance, can become damaged and need to be replaced.

“On Earth, what you would do is send someone down to the data center," said Baiju Bhatt, CEO of Aetherflux, a space-based solar energy company. "You replace the server, you replace the GPU, you’d do some surgery on that thing and you’d slide it back in.”

But no such repair crew exists in orbit, and those GPUs in space could get damaged due to their exposure to high-energy particles from the sun.

Bhatt says one workaround is to overprovision the satellite with extra chips to replace the ones that fail. But that’s an expensive proposition given they are likely to cost tens of thousands of dollars each, and current Starlink satellites only have a lifespan of about five years.

Competition — and leverage

Musk is not alone trying to solve these problems.

A company in Redmond, Washington, called Starcloud, launched a satellite in November carrying a single Nvidia-made AI computer chip to test out how it would fare in space. Google is exploring orbital data centers in a venture it calls Project Suncatcher. And Jeff Bezos’ Blue Origin announced plans in January for a constellation of more than 5,000 satellites to start launching late next year, though its focus has been more on communications than AI.

Still, Musk has an edge: He's got rockets.

Starcloud had to use one of his Falcon rockets to put its chip in space last year. Aetherflux plans to send a set of chips it calls a Galactic Brain to space on a SpaceX rocket later this year. And Google may also need to turn to Musk to get its first two planned prototype satellites off the ground by early next year.

Pierre Lionnet, a research director at the trade association Eurospace, says Musk routinely charges rivals far more than he charges himself —- as much as $20,000 per kilo of payload versus $2,000 internally.

He said Musk’s announcements this week signal that he plans to use that advantage to win this new space race.

“When he says we are going to put these data centers in space, it’s a way of telling the others we will keep these low launch costs for myself,” said Lionnet. “It’s a kind of powerplay.”

Johnson Space Center and UT partner to expand research, workforce development

onward and upward

NASA’s Johnson Space Center in Houston has forged a partnership with the University of Texas System to expand collaboration on research, workforce development and education that supports space exploration and national security.

“It’s an exciting time for the UT System and NASA to come together in new ways because Texas is at the epicenter of America’s space future. It’s an area where America is dominant, and we are committed as a university system to maintaining and growing that dominance,” Dr. John Zerwas, chancellor of the UT System, said in a news release.

Vanessa Wyche, director of Johnson Space Center, added that the partnership with the UT System “will enable us to meet our nation’s exploration goals and advance the future of space exploration.”

The news release noted that UT Health Houston and the UT Medical Branch in Galveston already collaborate with NASA. The UT Medical Branch’s aerospace medicine residency program and UT Health Houston’s space medicine program train NASA astronauts.

“We’re living through a unique moment where aerospace innovation, national security, economic transformation, and scientific discovery are converging like never before in Texas," Zerwas said. “UT institutions are uniquely positioned to partner with NASA in building a stronger and safer Texas.”

Zerwas became chancellor of the UT System in 2025. He joined the system in 2019 as executive vice chancellor for health affairs. Zerwas represented northwestern Ford Bend County in the Texas House from 2007 to 2019.

In 1996, he co-founded a Houston-area medical practice that became part of US Anesthesia Partners in 2012. He remained active in the practice until joining the UT System. Zerwas was chief medical officer of the Memorial Hermann Hospital System from 2003 to 2008 and was its chief physician integration officer until 2009.

Zerwas, a 1973 graduate of the Houston area’s Bellaire High School, is an alumnus of the University of Houston and Baylor College of Medicine.