MD Anderson is teaming up with TOPPAN Holdings on cutting-edge organoid tech to help match cancer patients with the most effective treatments. Photo via Getty Images.

The University of Texas MD Anderson Cancer Center and Japan’s TOPPAN Holdings Inc. have announced a strategic collaboration to co-develop TOPPAN Holdings’ 3D cell culture, or organoid, technology known as invivoid.

The technology will be used as a tool for personalized cancer treatments and drug screening efforts, according to a release from MD Anderson. TOPPAN has committed $10 million over five years to advance the joint research activities.

“The strategic alliance with MD Anderson paves a promising path toward personalized cancer medicine," Hiroshi Asada, head of the Business Innovation Center at TOPPAN Holdings, said in a news release.

Invivoid is capable of establishing organoid models directly from patient biopsies or other tissues in a way that is faster and more efficient. Researchers may be able to test a variety of potential treatments in the laboratory to understand which approach may work best for the patient, if validated clinically.

“Organoids allow us to model the three-dimensional complexity of human cancers in the lab, thus allowing us to engineer a powerful translational engine—one that could not only predict how patients will respond to therapy before treatment begins but also could help to reimagine how we discover and validate next-generation therapies," Dr. Donna Hansel, division head of pathology and laboratory medicine at MD Anderson, added in the news release. “Through this collaboration, we hope to make meaningful progress in modeling cancer biology for therapeutic innovation.”

The collaboration will build upon preclinical research previously conducted by MD Anderson and TOPPAN. The organizations will work collaboratively to obtain College of American Pathologists (CAP) and Clinical Laboratory Improvement Amendments (CLIA) certifications for the technology, which demonstrate a commitment to high-quality patient care. Once the certifications are obtained, they plan to conduct observational clinical studies and then prospective clinical studies.

“We believe our proprietary invivoid 3D cell culture technology, by enabling the rapid establishment of organoid models directly from patient biopsies, has strong potential to help identify more effective treatment options and reduce the likelihood of unnecessary therapies,” Asada added in the release. “Through collaboration on CAP/CLIA certification and clinical validation, we aim to bring this innovation closer to real-world patient care and contribute meaningfully to the advancement of cancer medicine."

Sentinel BioTherapeutics is developing cytokine interleukin-2 (IL-2) capsules to fight many solid tumors. Photo via Getty Images.

New Houston biotech co. developing capsules for hard-to-treat tumors

biotech breakthroughs

Houston company Sentinel BioTherapeutics has made promising headway in cancer immunotherapy for patients who don’t respond positively to more traditional treatments. New biotech venture creation studio RBL LLC (pronounced “rebel”) recently debuted the company at the 2025 American Society of Clinical Oncology (ASCO) Annual Meeting in Chicago.

Rima Chakrabarti is a neurologist by training. Though she says she’s “passionate about treating the brain,” her greatest fervor currently lies in leading Sentinel as its CEO. Sentinel is RBL’s first clinical venture, and Chakrabarti also serves as cofounder and managing partner of the venture studio.

The team sees an opportunity to use cytokine interleukin-2 (IL-2) capsules to fight many solid tumors for which immunotherapy hasn't been effective in the past. “We plan to develop a pipeline of drugs that way,” Chakrabarti says.

This may all sound brand-new, but Sentinel’s research goes back years to the work of Omid Veiseh, director of the Rice Biotechnology Launch Pad (RBLP). Through another, now-defunct company called Avenge Bio, Veiseh and Paul Wotton — also with RBLP and now RBL’s CEO and chairman of Sentinel — invested close to $45 million in capital toward their promising discovery.

From preclinical data on studies in mice, Avenge was able to manufacture its platform focused on ovarian cancer treatments and test it on 14 human patients. “That's essentially opened the door to understanding the clinical efficacy of this drug as well as it's brought this to the attention of the FDA, such that now we're able to continue that conversation,” says Chakrabarti. She emphasizes the point that Avenge’s demise was not due to the science, but to the company's unsuccessful outsourcing to a Massachusetts management team.

“They hadn't analyzed a lot of the data that we got access to upon the acquisition,” explains Chakrabarti. “When we analyzed the data, we saw this dose-dependent immune activation, very specific upregulation of checkpoints on T cells. We came to understand how effective this agent could be as an immune priming agent in a way that Avenge Bio hadn't been developing this drug.”

Chakrabarti says that Sentinel’s phase II trials are coming soon. They’ll continue their previous work with ovarian cancer, but Chakrabarti says that she also believes that the IL-2 capsules will be effective in the treatment of endometrial cancer. There’s also potential for people with other cancers located in the peritoneal cavity, such as colorectal cancer, gastrointestinal cancer and even primary peritoneal carcinomatosis.

“We're delivering these capsules into the peritoneal cavity and seeing both the safety as well as the immune activation,” Chakrabarti says. “We're seeing that up-regulation of the checkpoint that I mentioned. We're seeing a strong safety signal. This drug was very well-tolerated by patients where IL-2 has always had a challenge in being a well-tolerated drug.”

When phase II will take place is up to the success of Sentinel’s fundraising push. What we do know is that it will be led by Amir Jazaeri at MD Anderson Cancer Center. Part of the goal this summer is also to create an automated cell manufacturing process and prove that Sentinel can store its product long-term.

“This isn’t just another cell therapy,” Chakrabarti says.

"Sentinel's cytokine factory platform is the breakthrough technology that we believe has the potential to define the next era of cancer treatment," adds Wotton.

Xiaoyu Yang, a graduate student at Rice, is the lead author on a study published in the journal Science on smart cell design. Photo by Jeff Fitlow/ Courtesy Rice University

Rice research breakthrough paves the way for advanced disease therapies

study up

Bioengineers at Rice University have developed a “new construction kit” for building custom sense-and-respond circuits in human cells, representing a major breakthrough in the field of synthetic biology, which could "revolutionize" autoimmune disease and cancer therapeutics.

In a study published in the journal Science, the team focused on phosphorylation, a cellular process in the body in which a phosphate group is added to a protein, signaling a response. In multicellular organisms, phosphorylation-based signaling can involve a multistage, or a cascading-like effect. Rice’s team set out to show that each cycle in a cascade can be treated as an elementary unit, meaning that they can be reassembled in new configurations to form entirely novel pathways linking cellular inputs and outputs.

Previous research on using phosphorylation-based signaling for therapeutic purposes has focused on re-engineering pathways.

“This opens up the signaling circuit design space dramatically,” Caleb Bashor, assistant professor of bioengineering and biosciences and corresponding author on the study, said in a news release. “It turns out, phosphorylation cycles are not just interconnected but interconnectable … Our design strategy enabled us to engineer synthetic phosphorylation circuits that are not only highly tunable but that can also function in parallel with cells’ own processes without impacting their viability or growth rate.”

Bashor is the deputy director for the Rice Synthetic Biology Institute, which launched last year.

The Rice lab's sense-and-respond cellular circuit design is also innovative because phosphorylation occurs rapidly. Thus, the new circuits could potentially be programmed to respond to physiological events in minutes, compared to other methods, which take hours to activate.

Rice’s team successfully tested the circuits for sensitivity and their ability to respond to external signals, such as inflammatory issues. The researchers then used the framework to engineer a cellular circuit that can detect certain factors, control autoimmune flare-ups and reduce immunotherapy-associated toxicity.

“This work brings us a whole lot closer to being able to build ‘smart cells’ that can detect signs of disease and immediately release customizable treatments in response,” Xiaoyu Yang, a graduate student in the Systems, Synthetic and Physical Biology Ph.D. program at Rice who is the lead author on the study, said in a news release.

Ajo-Franklin, a professor of biosciences, bioengineering, chemical and biomolecular engineering and a Cancer Prevention and Research Institute of Texas Scholar, added “the Bashor lab’s work vaults us forward to a new frontier — controlling mammalian cells’ immediate response to change.”


Cellenkos Therapeutics has completed promising Phase 1b testing of its Treg cell therapy, CK0804, in the fight against myelofibrosis. Photo via Getty Images

Houston biotech company tests hard-to-fight cancer therapeutics

fighting cancer

A Houston-based, female-founded biotech company has developed a treatment that could prove to be an effective therapy for a rare blood cancer.

Cellenkos Therapeutics has completed promising Phase 1b testing of its Treg cell therapy, CK0804, in the fight against myelofibrosis. According to a news release from the Cellenkos team, the use of its cord-blood-derived therapeutics could signal a paradigm shift for the treatment of this hard-to-fight cancer.

Cellenkos was founded by MD Anderson Cancer Center physician and professor Simrit Parmar. Her research at the hospital displayed the ability of a unique subset of T cells’ capability to home in on a patient’s bone marrow, restoring immune balance, and potentially halting disease progression.

Myelofibrosis has long been treated primarily with JAK (Janus Kinase) inhibitors, medications that help to block inflammatory enzymes. They work by suppressing the immune response to the blood cancer, but don’t slow the progression of the malady. And they’re not effective for every patient.

“There is a significant need for new therapeutic options for patients living with myelofibrosis who have suboptimal responses to approved JAK inhibitors,” Parmar says. “We are greatly encouraged by the safety profile and early signs of efficacy observed in this patient cohort and look forward to continuing our evaluation of the clinical potential of CK0804 in our planned expansion cohort.”

The expansion cohort is currently enrolling patients with myelofibrosis. What exactly are sufferers dealing with? Myelofibrosis is a chronic disease that causes bone marrow to form scar tissue. This makes it difficult for the body to produce normal blood cells, leaving patients with fatigue, spleen enlargement and night sweats.

Myelofibrosis is rare, with just 16,000 to 18,500 people affected in the United States. But for patients who don’t respond well to JAKs, the prognosis could mean a shorter span than the six-year median survival rate outlined for the disease by Cleveland Clinic.

Helping myelofibrosis patients to thrive isn’t the only goal for Cellenkos right now.

The company seeks to aid people with rare conditions, particularly inflammatory and autoimmune disorders, with the use of CK0804, but also other candidates including one known as CK0801. The latter drug has shown promising efficacy in aplastic anemia, including transfusion independence in treated patients.

The company closed its $15 million series A round led by BVCF Management, based in Shanghai, in 2021. Read more here.

March Biosciences' oversubscribed raise brought in $28.4 million of financing with Mission BioCapital and 4BIO Capital leading the pack of investors. Photo via Getty Images

Clinical-stage Houston cell therapy company closes $28.4M oversubscribed series A

cha-ching

An emerging biotech company in Houston has closed its series A with outsized success.

March Biosciences' oversubscribed raise brought in $28.4 million of financing with Mission BioCapital and 4BIO Capital leading the pack of investors. The company has now raised more than $51 million in total.

Last year, March Biosciences announced its strategic alliance with CTMC (Cell Therapy Manufacturing Center), a joint venture between MD Anderson Cancer Center and National Resilience. CEO Sarah Hein met her co-founder, Max Mamonkin, at the TMC Accelerator for Cancer Therapeutics. Along with fellow co-founder Malcolm Brenner, March Biosciences launched from the Center for Cell and Gene Therapy (Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital). Its goal is to fight cancers that have been unresponsive to existing immunotherapies using its lead asset, MB-105.

An autologous CD5-targeted CAR-T cell therapy, MB-105 is currently in phase-1 trials in patients with refractory T-cell lymphoma and leukemia. The treatment is showing signs of being both safe and effective, meriting a phase-2 trial that will begin early next year. The funds raised from the series A will help to finance the Phase 2 clinical development of MB-105 to expand on the existing data with optimized manufacturing processes.

“This oversubscribed financing enables us to advance our first-in-class CAR-T therapy, MB-105, into a Phase 2 trial for T-cell lymphoma – an indication with an exceptionally poor prognosis and few treatment options,” says Hein. “With the support and confidence of our investors, we are not only advancing our lead program but also expanding our pipeline, underscoring our commitment to delivering best-in-class therapies to patients that can change the treatment paradigm for these challenging cancers.”

But that’s not the only exciting news that Hein and her associates have to report. March Biosciences has recently partnered with cell therapy venture studio, Volnay Therapeutics. Led by highly experienced cell therapy development veterans, the March Biosciences team will work to develop a scalable manufacturing process for MB-105 that will lead to commercialization. Volnay co-founder and CEO Stefan Wildt, who held key R&D leadership positions in cell and gene therapy units at Novartis and Takeda, has also joined the board of March Biosciences. The board of directors is also welcoming Cassidy Blundell of Mission BioCapital and Owen Smith of 4BIO Capital.

“The team at March Biosciences is leveraging powerful science and promising clinical data to tackle cancers with significant unmet need,” says Blundell, a partner at Mission BioCapital. “We're excited to support their journey and believe their focused approach with MB-105 could lead to significant breakthroughs in the CAR-T space.”

The Houston-born company, which is a finalist for the 2024 Houston Innovation Awards, continues to accelerate quickly, in part thanks to its home base. After all, existing local investors like TMC Venture Fund also participated in the new raise. As Hein said last year, “Working with partners here in Houston, we have all the pieces and the community rises to the occasion to support you.”

Diakonos Oncology Corp. closed its seed round to the tune of $11.4 million. Photo via Getty Images

Houston oncology therapeutics co. raises $11.4M in seed funding

money moves

A Houston-based, clinical-stage immuno-oncology company has raised an oversubscribed round of seed funding.

Diakonos Oncology Corp. closed its seed round to the tune of $11.4 million. The funding will go toward supporting the company's Phase 2 trial — slated for later this year, following its ongoing Phase 1 study — and operations through late next year. California-based biotechnology investment firm Restem Group Inc. led the round, and existing investors contributed as well.

“We greatly appreciate the support of these investors in sharing our passion for improving the lives of patients suffering from deadly cancers such as glioblastoma,” Mike Wicks, Diakonos CEO, says in a news release. “The fact that this financing is nearly triple our initial target also shows they share our confidence in the effectiveness of our unique cancer therapy.”

Founded in 2016, the company recently received FDA Fast Track designation for its dendritic cell vaccine, DOC1021, which targets glioblastoma multiforme, or GBM, the most common and most lethal malignant brain tumor in adults. Diakonos also received the designation for its pancreatic cancer treatment.

"We are thrilled to invest in this groundbreaking company that is at the forefront of cancer treatment innovation. As a firm deeply involved in the cell therapeutic field, we recognize the immense potential of their pioneering work with dendritic cell therapies and we are confident that this can become a new standard of care for cancer in the future," adds Andres Isaias, executive chairman of Restem Group Inc.

Diakonos Oncology's DOC1021 uses the body’s natural anti-viral immune response to fight GBM. The vaccine mimics viral infection with the patient’s cancer markers. Essentially, DOC1021 uses the body’s own natural ability to detect and eliminate infected cells. According to the company, all of the patients who have tried the treatment have exceeded survival expectations. And DOC1021 appears to be extremely safe, with no serious adverse effects having been reported.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston booms as No. 2 U.S. metro for new home construction

Construction Boom

Driven by population growth, more residential rooftops are popping up across Houston and the rest of Texas than anywhere else in America.

Using data from the U.S. Census Bureau and Zillow, Construction Coverage found 65,747 new residential units were authorized in greater Houston in 2024. That figure landed Houston in second place among major metro areas for the total number of housing permits, including those for single-family homes, apartments, and condos.

Just ahead of Houston was the Dallas-Fort Worth Metroplex, which took first place with 71,788 residential permits approved in 2024. In third place was the country’s largest metro, New York City (57,929 permits).Elsewhere in Texas, the Austin metro ranked sixth (32,294 permits), and the San Antonio metro ranked 20th (14,857 permits).

Construction Coverage also sorted major metro areas based on the number of new housing units authorized per 1,000 existing homes in 2024. Raleigh, North Carolina, held the No. 1 spot (28.8 permits per 1,000 existing homes), followed by Austin at No. 2 (28.6), DFW at No. 3 (22.2), Houston at No. 4 (21.6), and San Antonio at No. 13 (13.6).

A Newsweek analysis of Census Bureau data shows building permits for 225,756 new residential units were approved in 2024 in Texas — a trend fueled largely by activity in DFW, Houston, Austin, and San Antonio. That put Texas atop the list of states building the most residential units for the year.

Through the first eight months of last year, 145,901 permits for new residential units were approved in Texas, according to Census Bureau data. That’s nearly 80,000 permits shy of the 2024 total.

Among the states, Construction Coverage ranks Texas sixth for the number of residential building permits approved in 2024 per 1,000 existing homes (17.9).

Extra housing is being built in Texas to meet demand spurred by population growth. From April 2020 to July 2024, the state’s population increased 7.3 percent, the Census Bureau says.

While builders are busy constructing new housing in Texas, they’re not necessarily profiting a lot from homebuilding activity.

“Market conditions remain challenging, with two-thirds of builders reporting they are offering incentives to move buyers off the fence,” North Carolina homebuilder Buddy Hughes, chairman of the National Association of Home Builders, said in a December news release. “Meanwhile, builders are contending with rising material and labor prices, as tariffs are having serious repercussions on construction costs.”

5+ must-know application deadlines for Houston innovators

apply now

Editor's note: As 2026 ramps up, the Houston innovation scene is looking for the latest groups of innovative startups that'll make an impact. A number of accelerators and competitions have opened applications. Read below to see which might be a good fit for you or your venture. And take careful note of the deadlines. Please note: this article may be updated to include additional information and programs.

Did we miss an accelerator or competition accepting applications? Email innoeditor@innovationmap.com for editorial consideration.

2026 HCC Business Plan Competition

Deadline: Jan. 26

Details: HCC’s annual Business Plan Competition (BPC) is an opportunity for proposed, startup and existing entrepreneurs to develop focused plans to start or grow their businesses. Accepted teams will be announced and training will begin in late February and run through early June, with six free, three-hour training sessions. Advising will be provided to each accepted team. Applicants can apply as a team of up to five persons. Finalists will present to to gudges on May 27, 2026. Last year, $26,000 was awarded in seed money to the top five teams. In-kind prizes were also awarded to all graduating teams including free products, services and memberships, with an estimated in-kind value totaling $147,000. Find more information here.

University of Houston Technology Bridge Innov8 Hub (Spring 2026)

Deadline: Jan . 30

Details: UHTB Innov8 Hub’s immersive, 12-week startup acceleration program designed to help early-stage founders launch and scale their technology startups. Selected participants will gain access to expert mentors and advisors, collaborate with a cohort of peers, and compete for cash prizes during our final pitch event. The cohort begins Feb. 16, 2026. The program culminates in Pitch Day, where participants present their ventures to an audience of investors and partners from across the UH innovation ecosystem. Find more information here.

Rice Business Plan Competition 2026

Deadline: Jan. 31

Details: The Rice Business Plan Competition, hosted by the Rice Alliance for Technology and Entrepreneurship, gives collegiate entrepreneurs real-world experience to pitch their startups, enhance their business strategy and learn what it takes to launch a successful company. Forty-two teams will compete for more than $1 million in cash, investments and prizes on April 9-11, 2026. Find more information here.

Rice Veterans Business Battle 2026

Deadline: Jan. 31

Details: The Rice Veterans Business Battle is one of the nation’s largest pitch competitions for veteran-led startups, providing founders with mentorship, exposure to investors and the opportunity to compete for non-dilutive cash prizes. The event has led to more than $10 million of investments since it began in 2015. Teams will compete April 8-9, 2026. Find more information here.

TEX-E Fellows Application 2026-2027

Deadline: Feb. 10

Details: The TEX‑E Fellowship is a hands-on program designed for students interested in energy, climate, and entrepreneurship across Texas. It connects participants with industry mentors, startup founders, investors and academic leaders while providing practical, "real-world" experience in customer discovery, business modeling, and energy-transition innovation. Fellows gain access to workshops, real-world projects, and a statewide network shaping the future of energy and climate solutions. Participants must be a student at PVAMU, UH, UT Austin, Rice University, MIT or Texas A&M. Find more information here.

Greentown Go Make 2026

Deadline: March 10

Details: Greentown Go Make 2026 is an open-innovation program with Shell and Technip Energies. The six-month program is advancing industrial decarbonization by accelerating catalytic innovations. Selected startups will gain access to a structured platform to engage leadership from Shell and Technip Energies and explore potential partnership outcomes, including pilots and demonstrations. They’ll also receive networking opportunities, partnership-focused programming, and marketing visibility throughout the program. The cohort will be selected in May. Find more information here.

Houston startups closed $1.75 billion in 2025 VC funding, says report

by the numbers

Going against national trends, Houston-area startups raised 7 percent less venture capital last year than they did in 2024, according to the new PitchBook-NVCA Venture Monitor report.

The report shows local startups collected $1.75 billion in venture capital in 2025, down from $1.89 billion the previous year.

Houston-based geothermal energy company Fervo Energy received a big chunk of the region’s VC funding last year. Altogether, the startup snagged $562 million in investments, as well as a $60 million extension of an existing loan and $45.6 million in debt financing. The bulk of the 2025 haul was a $462 million Series E round.

In the fourth quarter of last year, Houston-area VC funding totaled $627.68 million. That was a 22 percent drop from $765.03 million during the same period in 2024. Still, the Q4 total was the biggest quarterly total in 2025.

Across the country, startups picked up $339.4 trillion in VC funding last year, a 59 percent increase from $213.2 trillion in 2024, according to the report. Over the last 10 years, only the VC total in 2021 ($358.2 trillion) surpassed the total from 2025.

Nationwide, startups in the artificial intelligence and machine learning sector accounted for the biggest share of VC funding (65.4 percent) in 2025, followed by software-as-a-service (SaaS), big data, manufacturing, life sciences and healthtech, according to the report.

“Despite an overall lack of new fundraising and a liquidity market that did not shape up as hoped in 2025, deal activity has begun a phase of regrowth, with deal count estimates showing increases at each stage, and deal value, though concentrated in a small number of deals, falling just [8 percent] short of the 2021 figure,” the report reads.