Allterum Therapeutics Inc., a portfolio company of Fannin Innovation Studio, is using the funds to prepare for clinical trials. Photo via Getty Images

Allterum Therapeutics Inc. has built a healthy launchpad for clinical trials of an immunotherapy being developed to fight a rare form of pediatric cancer.

The Houston startup recently collected $1.8 million in seed funding through an investor group associated with Houston-based Fannin Innovation Studio, which focuses on commercializing biotech and medtech discoveries. Allterum has also brought aboard pediatric oncologist Dr. Philip Breitfeld as its chief medical officer. And the startup, a Fannin spinout, has received a $2.9 million grant from the Cancer Prevention Research Institute of Texas.

The funding and Breitfeld's expertise will help Allterum prepare for clinical trials of 4A10, a monoclonal antibody therapy for treatment of cancers that "express" the interleukin-7 receptor (IL7R) gene. These cancers include pediatric acute lymphoblastic leukemia (ALL) and some solid-tumor diseases. The U.S. Food and Drug Administration (FDA) has granted "orphan drug" and "rare pediatric disease" designations to Allterum's monoclonal antibody therapy.

If the phrase "monoclonal antibody therapy" sounds familiar, that's because the FDA has authorized emergency use of this therapy for treatment of COVID-19. In early January, the National Institute of Allergy and Infectious Diseases announced the start of a large-scale clinical trial to evaluate monoclonal antibody therapy for treatment of mild and moderate cases of COVID-19.

Fannin Innovation Studio holds exclusive licensing for Allterum's antibody therapy, developed at the National Cancer Institute. Aside from the cancer institute, Allterum's partners in advancing this technology include the Therapeutic Alliance for Children's Leukemia, Baylor College of Medicine, Texas Children's Hospital, Children's Oncology Group, and Leukemia & Lymphoma Society.

Although many pediatric patients with ALL respond well to standard chemotherapy, some patients continue to grapple with the disease. In particular, patients whose T-cell ALL has returned don't have effective standard therapies available to them. Similarly, patients with one type of B-cell ALL may not benefit from current therapies. Allterum's antibody therapy is designed to effectively treat those patients.

Later this year, Allterum plans to seek FDA approval to proceed with concurrent first- and second-phase clinical trials for its immunotherapy, says Dr. Atul Varadhachary, managing partner of Fannin Innovation Studio, and president and CEO of Allterum. The cash Allterum has on hand now will go toward pretrial work. That will include the manufacturing of the antibody therapy by Japan's Fujifilm Diosynth Biotechnologies, which operates a facility in College Station.

"The process of making a monoclonal antibody ready to give to patients is actually quite expensive," says Varadhachary, adding that Allterum will need to raise more money to carry out the clinical trials.

The global market for monoclonal antibody therapies is projected to exceed $350 billion by 2027, Fortune Business Insight says. The continued growth of these products "is expected to be a major driver of overall biopharmaceutical product sales," according to a review published last year in the Journal of Biomedical Science.

One benefit of these antibody therapies, delivered through IV-delivered infusions, is that they tend to cause fewer side effects than chemotherapy drugs, the American Cancer Society says.

"Monoclonal antibodies are laboratory-produced molecules engineered to serve as substitute antibodies that can restore, enhance or mimic the immune system's attack on cancer cells. They are designed to bind to antigens that are generally more numerous on the surface of cancer cells than healthy cells," the Mayo Clinic says.

Varadhachary says that unlike chemotherapy, monoclonal antibody therapy takes aim at specific targets. Therefore, monoclonal antibody therapy typically doesn't broadly harm healthy cells the way chemotherapy does.

Allterum's clinical trials initially will involve children with ALL, he says, but eventually will pivot to children and adults with other kinds of cancer. Varadhachary believes the initial trials may be the first cancer therapy trials to ever start with children.

"Our collaborators are excited about that because, more often than not, the cancer drugs for children are ones that were first developed for adults and then you extend them to children," he says. "We're quite pleased to be able to do something that's going to be important to children."

A new tool being used at Houston Methodist taps into artificial intelligence breast cancer diagnosis. Photo courtesy of Houston Methodist

Houston hospital uses AI to create new breast cancer risk calculator

iBrisk

In the medical field, billions of dollars are wasted each year — about $935 billion, but who's counting? According to a paper published by the JAMA Network, an estimated $75.7 billion to $101.2 billion is wasted through overtreatment. Of the many procedures that can lead to wasted resources, breast cancer biopsies are a major source of overtreatment. Houston Methodist Hospital is using artificial intelligence to create a more efficient and accurate Breast Cancer Risk Calculator, called iBrisk.

Breast cancer is something that plagues the lives of many women, and some men. According to the National Breast Cancer Foundation, one in eight women will be diagnosed with breast cancer in their lifetime.

Women are advised to start having annual mammograms to screen for breast cancer starting at age 40 to try to catch cancer in its earliest stages. With mammograms becoming a standard procedure, the process inevitably leads to more biopsies.

While more biopsies sound like the obvious course of action, Houston Methodist Hospital shares that out of 10,000 women biopsied, less than two will be positive while using the national standard. The result of a negative biopsy? Wasted time, resources, and money, as well as undue worry for the patient.

"It's not just wasteful. . .when you do an unnecessary procedure, you're potentially harming the patient," says Stephen Wong, Ph.D. After a negative biopsy, Dr. Wong explains that patients often begin to show emotional responses like high anxiety and low self-esteem. They often speculate the biopsies are wrong, and that they've had a missed cancer diagnosis by their medical provider.

Dr. Wong estimates that more than 700,000 patients have unnecessary biopsies in the breast cancer category alone.

Spearheading the iBrisk tool, Dr. Wong has found a way to utilize a smarter model than the current system for detecting breast cancer risk.

Hospitals across the country currently use the Breast Imaging Reporting and Database System score (BI-RADS), a system created by the American College of Radiology to determine breast cancer risk and biopsy decision-making.

To expand on BI-RADS data, Dr. Wong used multiple patient data points and AI technology to create the improved system. The iBRISK integrates natural language processing, medical image analysis, and deep learning on multi-modal BI-RADS patient data to make one of three recommendations: biopsy not recommended, consider biopsy, or biopsy recommended.

"While using AI, we try to simulate how the physician thinks," explains Dr. Wong. "The physician looks at different data: imaging, patient clinical data, demographic, history and other social factors. You don't rely on one particular thing."

To create iBrisk, Dr. Wong used 12 to 13 years of BI-RAD data at Houston Methodist Hospital to train the AI using deep learning.

He estimates that more than 80 percent of technical information is in the free text format, meaning unstructured data, in the United States.

"We applied an AI technique called natural language processing, which is using the computer to read the text automatically for us," explains Dr. Wong.

This data extraction tool was also used with imaging of mammogram ultrasounds by applying image analysis computer vision.

iBrisk also deploys deep learning, a machine learning tactic where artificial neural networks, inspired by the human brain, learn from large amounts of data. They determined approximately 100 parameters to analyze, including age, sex, socio-economic data, medical history, and insurance plans. After putting the data points into a deep learning method, the AI reduced the data points to the 20 risk indicators.

Houston Methodist Hospital used an estimated 11,000 cases for training, and then used 2,200 of its own data to test iBrisk. They have even been able to create unbiased independent validation by working with other hospitals like MD Anderson, testing their patients using iBrisk and confirming the results.

The potential of iBrisk to cut costs and contribute to less overtreatment has garnered support with other hospitals around the country. The breast cancer risk calculator is a collaboration with Dr. Jenny Chang of HMCC and breast oncologists at MD Anderson, UT San Antonio, and University of Utah Cancer Center.

While implicit racial bias has become a more prominent issue in the United States, Houston Methodist's iBrisk grants a neutral, unbiased lens. AI isn't immune to racial bias; in fact, computer scientist and founder of the Algorithmic Justice League, Joy Buolamwini, uncovered the large gender and racial biases of AI systems sold by IBM, Amazon and Microsoft in a 2019 article for Time.

With AI's history of racial bias in mind, Dr. Wong set out to create an impartial, fair system. "Our AI data is not sensitive to race. . .it's unbiased," he explains.

Houston Methodist Hospital plans to expand the iBrisk model to other forms of cancer in the future, including its next venture into thyroid and incidental lung nodule screenings.

The AI allows patients to save the stress of getting a biopsy.

"We are very careful to put any drugs or any procedure into clinical workflow until we are very sure you really have to pick this [outcome]," explains Dr. Wong. Using advanced risk detectors like iBrisk allows medical practitioners to make more thorough, informed decisions for patients looking into biopsies.

The categories are broken into low, moderate and high-risk groups. The low-risk groups have seen a 99.8 percent accuracy in results, missing only two cases out of a sample of 1,228. Patients that have fallen into the high-risk groups (leading patients to get a biopsy) have seen an 85.9 percent accuracy, compared to radiology, which is 25 percent accurate according to Dr. Wong.

Dr. Wong notes that patients that fall in the moderate section of the risk assessment can then have a dialogue with their physician to determine if they want to move forward with the biopsy. In the moderate category, there is a 93.4 percent accuracy.

If implemented, iBrisk would be able to reduce 75 percent of unnecessary biopsies, estimates Dr. Wong.

Currently, Houston Methodist Hospital is using AI technology outside of oncology, with the recent release of a tool that can diagnose strokes using a smartphone, announced in Science Daily. The tool, which can diagnose abnormalities in a patient's speech and facial muscular movements, was made in collaboration with Dr. Jay Volpi of Eddy Scullock Stroke Center at Houston Methodist Hospital.

"We are answering bigger questions," explains Dr. Wong, who looks forward to continuing to expand AI capabilities and risk calculators at Houston Methodist Hospital.

In the future, Dr. Wong looks forward to doing a multicenter trial to bring this technology outside of Texas.

Five cancer research teams have been selected to receive funds from a new initiative from the University of Texas. Photo via news.utexas.edu

UT system funds Houston researchers in new collaboration to cure cancer

collaborate for a cure

In a renewed effort to move the needle on finding a cure for cancer, the University of Texas system has launched a new collaboration in oncological data and computational science across three programs.

Houston-based University of Texas MD Anderson Cancer Center has teamed up with two UT Austin schools — the Oden Institute for Computational Engineering and Sciences and the Texas Advanced Computing Center. The collaboration was announced this summer to tap into mathematical modeling and advanced computing along with oncology expertise to inspire new methods of cancer treatment.

"Integrating and learning from the massive amount of largely unstructured data in cancer care and research is a formidable challenge," says David Jaffray, Ph.D., chief technology and digital officer at MD Anderson, in a news release. "We need to bring together teams that can place quantitative data in context and inform state-of-the-art computational models of the disease and accelerate progress in our mission to end cancer."

Now, the first five projects to be funded under this new initiative have been announced.

  • Angela Jarrett of the Oden Institute and Maia Rauch of MD Anderson will develop a patient-specific mathematical model for forecasting treatment response and designing optimal therapy strategies for patients with triple-negative breast cancer.
  • Caroline Chung of MD Anderson and David Hormuth of the Oden Institute are using computational models of the underlying biology to fundamentally change how radiotherapy and chemotherapy are personalized to improve survival rates for brain cancer patients.
  • Ken-Pin Hwang of MD Anderson and Jon Tamir of UT Austin's Department of Electrical and Computer Engineering and the Oden Institute will use mathematical modeling and massively parallel distributed computing to make prostate MR imaging faster and more accurate to reduce the incidence of unnecessary or inaccurate biopsies.
  • Xiaodong Zhang of MD Anderson and Hang Liu of TACC will advance both the planning and delivery of proton therapy via a platform that combines mathematical algorithms and high-performance computing to further personalize these already highly tailored treatments.
  • Tinsley Oden and Prashant Jha of the Oden Institute and David Fuentes of MD Anderson will integrate a new mechanistic model of tumor growth with an advanced form of MRI to reveal underlying metabolic alterations in tumors and lead to new treatments for patients.

"These five research teams, made up of a cross section of expertise from all three stakeholders, represent the beginning of something truly special," says Jaffray in a release. "Our experts are advancing cancer research and care, and we are committed to working with our colleagues at the Oden Institute and TACC to bring together their computational expertise with our data and insights."

Later this month, the five teams will log on to a virtual retreat along with academic and government thought leaders to further collaborate and intertwine their research and expertise.

"Texas is globally recognized for its excellence in computing and in cancer research. This collaboration forges a new path to international leadership through the combination of its strengths in both," says Karen Willcox, director of the Oden Institute. "We are thrilled that leaders in government, industry and academia see the potential of this unique Texan partnership. We're looking forward to a virtual retreat on October 29 to continue to build upon this realization."

Houston's Nobel Prize winner, Jim Allison, is the star of Breakthrough, which premieres on Independent Lens at 9 pm Monday, April 27, on PBS, PBS.org, and the PBS Video App. Photo via SXSW.com

Documentary featuring Houston Nobel Prize winner to air on PBS

to-watch list

Not all heroes wear capes. In fact, our current coronavirus heroes are donning face masks as they save lives. One local health care hero has a different disease as his enemy, and you'll soon be able to stream his story.

Dr. James "Jim" Allison won the 2018 Nobel Prize in Physiology or Medicine for his work in battling cancer by treating the immune system — rather than the tumor. Allison, who is the chair of Immunology and executive director of the Immunotherapy Platform at MD Anderson Cancer Center, has quietly and often, singularly, waged war with cancer utilizing this unique approach.

The soft-spoken trailblazer is the subject of an award-winning documentary, Jim Allison: Breakthrough, which will air on PBS and its streaming channels on Monday, April 27 at 9 pm (check local listings for channel information). Lauded as "the most cheering film of the year" by the Washington Post, the film follows Allison's personal journey to defeat cancer, inspired and driven by the disease killed his mother.

Breakthrough is narrated by Woody Harrelson and features music by Willie Nelson, adding a distinct hint of Texana. (The film was a star at 2019's South by Southwest film festival.) The documentary charts Alice, Texas native as he enrolls at the University of Texas, Austin and ultimately, cultivates an interest in T cells and the immune system — and begins to frequent Austin's legendary music scene. Fascinated by the immune system's power to protect the body from disease, Allison's research soon focuses on how it can be used to treat cancer.

Viewers will find Allison charming, humble, and entertaining: the venerable doctor is also an accomplished blues harmonica player. Director Bill Haney weaves Allison's personal story with the medical case of Sharon Belvin, a patient diagnosed with melanoma in 2004 who soon enrolled in Allison's clinical trials. Belvin has since been entirely cancer-free, according to press materials.

"We are facing a global health challenge that knows no boundaries or race or religion, and we are all relying on gifted and passionate scientists and healthcare workers to contain and ultimately beat this thing," said Haney, in a statement. "Jim Allison and the unrelenting scientists like him are my heroes – and I'll bet they become yours!"

Jim Allison: Breakthrough premieres on Independent Lens at 9 pm Monday, April 27, on PBS, PBS.org, and the PBS Video App.

------

This article originally ran on CultureMap.

Breakthrough research on metastatic breast cancer, a new way to turn toxic pollutants into valuable chemicals, and an evolved brain tumor chip are three cancer-fighting treatments coming out of Houston. Getty Inages

These 3 Houston research projects are aiming to fight or prevent cancer

Research roundup

Cancer remains to be one of the medical research community's huge focuses and challenges, and scientists in Houston are continuing to innovate new treatments and technologies to make an impact on cancer and its ripple effect.

Three research projects coming out of Houston institutions are providing solutions in the fight against cancer — from ways to monitor treatment to eliminating cancer-causing chemicals in the first place.

Baylor College of Medicine's breakthrough in breast cancer

Photo via bcm.edu

Researchers at Baylor College of Medicine and Harvard Medical School have unveiled a mechanism explains how "endocrine-resistant breast cancer acquires metastatic behavior," according to a news release from BCM. This research can be game changing for introducing new therapeutic strategies.

The study was published in the Proceedings of the National Academy of Sciences and shows that hyperactive FOXA1 signaling — previously reported in endocrine-resistant metastatic breast cancer — can trigger genome-wide reprogramming that enhances resistance to treatment.

"Working with breast cancer cell lines in the laboratory, we discovered that FOXA1 reprograms endocrine therapy-resistant breast cancer cells by turning on certain genes that were turned off before and turning off other genes," says Dr. Xiaoyong Fu, assistant professor of molecular and cellular biology and part of the Lester and Sue Smith Breast Center at Baylor, in the release.

"The new gene expression program mimics an early embryonic developmental program that endow cancer cells with new capabilities, such as being able to migrate to other tissues and invade them aggressively, hallmarks of metastatic behavior."

Patients whose cancer is considered metastatic — even ones that initially responded to treatment — tend to relapse and die due to the cancer's resistance to treatment. This research will allow for new conversations around therapeutic treatment that could work to eliminate metastatic cancer.

University of Houston's evolved brain cancer chip

Photo via uh.edu

A biomedical research team at the University of Houston has made improvements on its microfluidic brain cancer chip. The Akay Lab's new chip "allows multiple-simultaneous drug administration, and a massive parallel testing of drug response for patients with glioblastoma," according to a UH news release. GBM is the most common malignant brain tumor and makes up half of all cases. Patients with GBM have a five-year survival rate of only 5.6 percent.

"The new chip generates tumor spheroids, or clusters, and provides large-scale assessments on the response of these GBM tumor cells to various concentrations and combinations of drugs. This platform could optimize the use of rare tumor samples derived from GBM patients to provide valuable insight on the tumor growth and responses to drug therapies," says Metin Akay, John S. Dunn Endowed Chair Professor of Biomedical Engineering and department chair, in the release.

Akay's team published a paper in the inaugural issue of the IEEE Engineering in Medicine & Biology Society's Open Journal of Engineering in Medicine and Biology. The report explains how the technology is able to quickly assess how well a cancer drug is improving its patients' health.

"When we can tell the doctor that the patient needs a combination of drugs and the exact proportion of each, this is precision medicine," Akay explains in the release.

Rice University's pollution transformation technology

Photo via rice.edu

Rice University engineers have developed a way to get rid of cancer-causing pollutants in water and transform them into valuable chemicals. A team lead by Michael Wong and Thomas Senftle has created this new catalyst that turns nitrate into ammonia. The study was published in the journal ACS Catalysis.

"Agricultural fertilizer runoff is contaminating ground and surface water, which causes ecological effects such as algae blooms as well as significant adverse effects for humans, including cancer, hypertension and developmental issues in babies," says Wong, professor and chair of the Department of Chemical and Biomolecular Engineering in Rice's Brown School of Engineering, in a news release. "I've been very curious about nitrogen chemistry, especially if I can design materials that clean water of nitrogen compounds like nitrites and nitrates."

The ability to transform these chemicals into ammonia is crucial because ammonia-based fertilizers are used for global food supplies and the traditional method of creating ammonia is energy intensive. Not only does this process eliminate that energy usage, but it's ridding the contaminated water of toxic chemicals.

"I'm excited about removing nitrite, forming ammonia and hydrazine, as well as the chemistry that we figured out about how all this happens," Wong says in the release. "The most important takeaway is that we learned how to clean water in a simpler way and created chemicals that are more valuable than the waste stream."

Dr. Colleen O'Connor has adapted immunotherapy treatments to be used in dogs. Courtesy of CAVU Biotherapies

Houston-based veterinary biotech startup modernizes cancer treatments for dogs

Paw-dern medicine

More than three years after its founding, Houston-based veterinary biotech company CAVU Biotherapies recently accomplished a significant milestone. In October, CAVU's specialized immunotherapy was administered to its first cancer patient: a black Labrador in Pennsylvania diagnosed with B-cell lymphoma.

Dr. Colleen O'Connor, CEO and founder of CAVU Biotherapies, established the company in July 2015 with a goal to help pets live longer post-cancer diagnoses. O'Connor, who earned a PhD in toxicology with a specialty in immunology, has more than a decade of hands-on experience researching cancer treatments.

"Our goal is to scale up and be able to increase our dogs' qualities of life with us," O'Connor said. "We want to keep families intact longer and we want to be able to modernize cancer care for our animals."

At CAVU, O'Connor dedicates her time to modernizing cancer care for dogs by developing an Autologous Prescription Product, otherwise known as adoptive T-cell therapy for dogs. The T-cell therapy is currently offered as a companion treatment to other canine cancer treatments, such as chemotherapy, radiation or surgery, O'Connor said.

Historically, cancer research for animals has lagged behind that of humans, and cancer diagnoses have come late due to the language barrier, O'Connor said. Of the dogs who enter remission, a majority of them relapse within 10 months to one year, she said.

"A majority [of dogs] are diagnosed at stage four, and you have to become very aggressive," O'Connor said. "For B-cell lymphoma, with the current treatments right now and the current standard of [therapies], less than 20 percent make it to two years post-diagnosis."

Launching CAVU
O'Connor first began studying T-cell therapy for humans with cancer during her post-doctoral fellowship at M.D. Anderson Cancer Center. Her fellowship also partnered with Texas A&M University's Small Animal Hospital to develop a clinical trial studying the effects of adoptive T-cell therapies on dogs with B-cell lymphoma.

T-cell therapy is a cellular-based treatment in which a type of white blood cells — or the cells that fight off tumors and infections — are harvested from blood samples drawn from patients. The cells are then injected back into the patient through an IV to fight the cancerous cells, O'Connor said.

Unexpectedly, O'Connor's 19-year-old dog, Bubbles, was diagnosed with transitional cell carcinoma in 2008 and later dying from it in December 2009. Five years later, O'Connor's sister's 6-year-old dog, Daisy, also died from transitional cell carcinoma. O'Connor said she remembers feeling helpless as she watched the dogs succumb to the disease.

"I was giving them drugs and protocols that were from 1980 … and I was really upset that there wasn't much more we could do for our dogs — especially because I treat my dogs like family," O'Connor said.

That was when O'Connor realized she wanted to help prevent other people from feeling the pain of losing their furry family members. While T-cell therapy is not a new method of treating cancer in humans, O'Connor focused on modifying the serum to create a treatment plan appropriate for dogs.

However, launching a company focusing specifically on treating cancer in animals was not without its challenges; O'Connor said she had to learn how to start a business, make industry connections, and adopt an entrepreneurial mindset.

To help with this, CAVU also connected with various entrepreneurial accelerators, such as Houston Technology Center and Station Houston, which are associations that help place young businesses in front of investors.

CAVU later became a member of the Houston Angel Network — a group of private investors of high net worth individuals that as a group invest in startups. By presenting her business to HAN and its investors, CAVU was able to gain financial backing.

CAVU also recently joined the Capital Factory in early 2018, an Austin-based accelerator program for entrepreneurs in Texas. O'Connor said the program has helped her meet investors, mentors and other startups.

"The way I overcame a lot of this [the early challenges] is by education, listening and trying to navigate and talk with as many of the right people as I could that had experience," she said.

The future of CAVU
Since CAVU treated its first patient in October, CAVU's adoptive T-cell therapy treatment has been administered to six dogs, O'Connor said. CAVU's T-cell therapy is currently available at more than 12 veterinary clinics across the country, including clinics in Texas, Florida, Pennsylvania, New York, North Carolina, and Missouri.

Additionally, four Houston-area clinics currently offer the T-cell therapy treatment: Garden Oaks Veterinary Clinic, Bayou City Veterinary Hospital, Memorial-610 Hospital for Animals, and Sugar Land Veterinary Specialists.

In order for a dog to be considered as a candidate — though it is ultimately up to the veterinarian on whether the T-cell therapy is right for specific dogs — the dogs must weigh more than 8 pounds, not be allergic to mouse or cow products and have no active autoimmune diseases.

The company also launched a new clinical trial with A&M University in October, looking at the effects of CAVU's T-cell therapy coupled with reduced chemotherapy periods for dogs, from roughly 19 to 26 weeks of chemotherapy to 6 to 8 weeks.

While CAVU's therapy is currently only available for dogs, O'Connor said her team plans to modify the T-cell therapy to be administered in other animals.

"We have a lot of cat owners ask us [about treatment] and we are going to do that for the next round in funding," she said. "We're going to look at how to translate this for cats and eventually horses."

O'Connor said that CAVU will launch more clinical trials with A&M University's Small Animal Hospital in the future, with CAVU aiming to make T-cell therapy treatments for cats and horses available in 2020.

Looking back, O'Connor said she has come a long way in her career path: from working with sea animals at the Newport Aquarium in Kentucky to studying human immunology and toxicology, but she's returned to studying animals.

"It's amazing how I pivoted, but at the end of the day I kind of came back to animals … and I came back full circle in a way I could have never expected," she said.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

5 can't-miss innovation events at CERAWeek featuring Houston speakers

where to be online

While usually hundreds of energy experts, C-level executives, diplomats, members of royal families, and more descend upon Houston for the the annual CERAWeek by IHS Markit conference, this year will be a little different. Canceled last year due to COVID-19, CERAWeek is returning — completely virtually.

The Agora track is back and focused on innovation within the energy sector. The Agora track's events — thought-provoking panels, intimate pods, and corporate-hosted "houses" — can be accessed through a virtual atrium.

Undoubtedly, many of the panels will have Houston representatives considering Houston's dominance in the industry, but here are five innovation-focused events you can't miss during CERAWeek that feature Houstonians.

Monday — New Horizons for Energy & Climate Research

The COVID-19 pandemic has made vivid and real the risks of an uncontrolled virus. Risks posed by climate change are also becoming more palpable every day. At the forefront of understanding these risks, universities are developing solutions by connecting science, engineering, business, and public policy disciplines. Along with industry and governments, universities are critical to developing affordable and sustainable solutions to meet the world's energy needs and achieve net-zero emission goals. Can the dual challenge of more energy and lower emissions be met? What is some of the most promising energy and climate research at universities? Beyond research, what are the roles and responsibilities of universities in the energy transition?

Featuring: Kenneth B. Medlock, III, James A. Baker, III, and Susan G. Baker Fellow In Energy And Resource Economics, Baker Institute and Senior Director, Center For Energy Studies at Rice University

Catch the panel at 1 pm on Monday, March 1. Learn more.

Tuesday — Conversations in Cleantech: Powering the energy transition

With renewables investment outperforming oil and gas investment for the first time ever in the middle of a pandemic, 2020 was a tipping point in the Energy Transition. Low oil prices intensified energy majors' attention on diversification and expansion into mature and emerging clean technologies such as battery storage, low-carbon hydrogen, and carbon removal technologies. Yet, the magnitude of the Energy Transition challenge requires an acceleration of strategic decisions on the technologies needed to make it happen, policy frameworks to promote public-private partnerships, and innovative investment schemes.

Three Cleantech leaders share their challenges, successes, and lessons learned at the forefront of the Energy Transition. What is their vision and strategy to accelerate lowering emissions and confronting climate change? Can companies develop clear strategies for cleantech investments that balance sustainability goals and corporate returns? What is the value of increasing leadership diversity for energy corporations? Can the Energy Transition be truly transformational without an inclusive workforce and a diverse leadership?

Featuring: Emily Reichert, CEO of Greentown Labs, which is opening a location in Houston this year.

The event takes place at 11:30 am on Tuesday, March 2. Learn more.

Wednesday — Rice Alliance Venture Day at CERAWeek

The Rice Alliance for Technology and Entrepreneurship pitch event will showcase 20 technology companies with new solutions for the energy industry. Each presentation will be followed by questions from a panel of industry experts.

Presenting Companies: Acoustic Wells, ALLY ENERGY, Bluefield Technologies, Cemvita Factory, Connectus Global, Damorphe, Ovopod Ltd., DrillDocs, GreenFire Energy, inerG, Locus Bio-Energy Solutions, Nesh, Pythias Analytics, REVOLUTION Turbine Technologies, Revterra, ROCSOLE, Senslytics, Subsea Micropiles, Syzygy Plasmonics, Transitional Energy, and Universal Subsea.

The event takes place at 9 am on Wednesday, March 3. Learn more.

Thursday — How Will the Energy Innovation Ecosystem Evolve?

Although the cleantech innovation ecosystem—research institutions, entrepreneurs, financiers, and support institutions—is diverse and productive, converting cleantech discoveries and research breakthroughs into commercially viable, transformative energy systems has proven difficult. With incumbent energy systems economically efficient and deeply entrenched, cleantech innovation faces a fundamental dilemma—the scale economies necessary to compete require a large customer base that does not yet exist. How is our clean energy innovation ecosystem equipped to be transformative? What needs to be strengthened? Is it profitable to focus on individual elements, or should we consider the system holistically, and reframe our expectations?

Featuring: Barbara Burger, vice president of innovation at Chevron and president at Chevron Technology Ventures

The event takes place at 7:30 am on Thursday, March 4. Learn more.

Friday — Cities: Managing crises & the future of energy

Houston is the capital of global energy and for the past four decades the home of CERAWeek. Mayor Sylvester Turner will share lessons from the city's experience with the pandemic, discuss leadership strategies during times of crisis, and explore Houston's evolving role in the new map of energy.

The event takes place at 8 am on Friday, March 5. Learn more.

Rice University develops 2 new innovative tools to detect COVID-19

pandemic tech

Rice University is once again spearheading research and solutions in the ongoing battle with COVID-19. The university announced two developing innovations: a "real-time sensor" to detect the virus and a cellphone tool that can detect the disease in less than an hour.

Sensing COVID
Researchers at Rice received funding for up to $1 million to develop the real-time sensor that promises to detect minute amounts of the airborne virus.

Teams at Rice and the University of Texas Medical Branch (UTMB) at Galveston are working to develop a thin film electronic device that senses as few as eight SARS-CoV-2 viruses in 10 minutes of sampling air flowing at 8 liters per minute, per a press release.

Dubbed the Real-Time Amperometric Platform Using Molecular Imprinting for Selective Detection of SARS-CoV-2 (or, RAPID), the project has been funded by the Defense Advanced Research Projects Agency (DARPA), Rice notes. Further funding will be contingent upon a successful demonstration of the technology.

Attacking with an app
Meanwhile, the university announced that its engineers have developed a plug-in tool that can diagnose COVID-19 in around 55 minutes. The tool utilizes programmed magnetic nanobeads and a tool that plugs into a basic cellphone.

First, a stamp-sized microfluidic chip measures the concentration of SARS-CoV-2 nucleocapsid protein in blood serum from a standard finger prick.

Then, nanobeads bind to SARS-CoV-2 N protein, a biomarker for COVID-19, in the chip and transport it to an electrochemical sensor that detects minute amounts of the biomarker. Paired with a Google Pixel 2 phone and a plug-in tool, researchers quickly secured a positive diagnosis.

This, researchers argue, simplifies sample handling compared to swab-based PCR tests that must be analyzed in a laboratory.

"What's great about this device is that it doesn't require a laboratory," said Rice engineer Peter Lillehoj in a statement. "You can perform the entire test and generate the results at the collection site, health clinic or even a pharmacy. The entire system is easily transportable and easy to use."

------

This article originally ran on CultureMap.