Houston-based Soliton, which has created a technology that uses sound to treat cellulite and scars, has been acquired. Photo via soliton.com

A California company has acquired Houston-based Soliton as well as its innovative device that uses sound to eliminate cellulite.

Allergan Aesthetics, an AbbVie company, has announced an agreement to acquire Soliton and its rapid acoustic pulse device RESONICTM, which recently received U.S. Food and Drug Administration clearance for the treatment of cellulite.

The company's team first developed the basis of the tool for tattoo removal and earned FDA clearance for that treatment a few years ago. Christopher Capelli and Walter Klemp co-founded Soliton in 2012.

The acquisition will take Soliton's technology to the next level, says Klemp, who serves as the company's executive chairman.

"Allergan Aesthetics' brand recognition, global footprint, track record and commitment to developing best-in-class aesthetic treatments makes the Company ideally suited to maximize the commercial potential of the RESONICTM rapid acoustic pulse technology," Klemp says in the release.

"I am proud of the passion and accomplishments of the Soliton team and thankful for the ongoing support of our investors which have culminated in this transaction," he continues. "We look forward to working with Allergan Aesthetics to ensure a successful completion of this transaction."

For Carrie Strom, president of Global Allergan Aesthetics and senior vice president at AbbVie, Soliton's solution has a great potential in the market. Soliton's clinical trial data that was submitted to the FDA showed that after a single treatment session, RESONICTM demonstrated significant improvement and strong patient satisfaction with 92.9 percent of subjects agreeing or strongly agreeing their cellulite appeared improved, per the release.

"There is a huge unmet need to address cellulite and effective treatments have been elusive and frustrating for consumers," Strom says in the release. "Soliton's technology offers a new, completely non-invasive approach with clinically-proven results to reduce the appearance of cellulite with no patient downtime.

"The addition of this technology complements Allergan Aesthetics' portfolio of body contouring treatments," she continues. "Health care providers will now have another option to address consumers' aesthetic concerns."

Brad Hauser, CEO of Soliton, previously told InnovationMap that the company's plans for 2021 included focusing on the commercialization of their product and get it into the hands of dermatologists, plastic surgeons, and other medical professionals for 25 key accounts — potentially including ones Houston — with a plan for a national rollout in 2022.

This week's roundup of Houston innovators includes Richard Seline of the Resilience Innovation Hub, Deanna Zhang of Tudor, Pickering, and Holt, and Brad Hauser of Soliton. Courtesy photos

3 Houston innovators to know this week

who's who

Editor's note: In the week's roundup of Houston innovators to know, I'm introducing you to three innovators across industries recently making headlines — from resilience technology to energy innovation.

Richard Seline, co-founder at the Houston-based Resilience Innovation Hub Collaboratory

Richard Seline of Houston-based Resilience Innovation Hub joins the Houston Innovators Podcast to discuss how it's time for the world to see Houston as the resilient city it is. Photo courtesy of ResilientH20

Richard Seline says on this week's episode of the Houston Innovators Podcast, that people are exhausted and these feelings are festering into frustration and anger — and calling for change. The things that need to change, Seline says, includes growing investment and innovation in resilience solutions.

"As a fourth generation Houstonian, it's just so hard to see my hometown get hit persistently with a lot of these weather and other type of disasters," Seline says.

These unprecedented disasters — which are of course occurring beyond Houston and Texas — have also sparked a growing interest in change for insurance companies that have lost a trillion dollars on the United States Gulf Coast over the past seven years, Seline says. Something has got to change regarding preparation and damage mitigation. Read more and stream the podcast.

Deanna Zhang, director of energy technology at Houston-based Tudor, Pickering, Holt & Co.

Deanna Zhang of Tudor, Pickering, Holt & Co. writes a response to the energy crisis that occured in Texas in February. Photo courtesy of TPH

Deanna Zhang specializes in energy tech, and what she witnessed from February's winter weather was basically an epic fail caused by a myriad of issues.

"But it's oversimplifying to say that the only solution to preventing another situation like this is continued or increased reliance on the oil and gas industry," she writes in a guest article for InnovationMap. "What last week ultimately demonstrated was the multitude of technology solutions that needs to scale up to provide us with the best energy reliability and availability." Read more.

Brad Hauser, CEO of Soliton

Houston-based Soliton can use its audio pulse technology to erase scars, cellulite, and tattoos. Photo courtesy of Soliton

A Houston company has created a technology that uses sound to make changes in human skin tissue. Soliton, led by Brad Hauser, is using audio pulses to make waves in the med-aesthetic industry. The company, which is licensed from the University of Texas on behalf of MD Anderson, announced that it had received FDA approval earlier this month for its novel and proprietary technology that can reduce the appearance of cellulite.

"The original indication was tattoo removal," Hauser says. "The sound wave can increase in speed whenever it hits a stiffer or denser material. And tattoo ink is denser, stiffer than the surrounding dermis. That allows a shearing effect of the sound wave to disrupt that tattoo ink and help clear tattoos."

According to Hauser, the team then turned to a second application for the technology in the short-term improvement in the appearance of cellulite. With the use of the technology, patients can undergo a relatively pain-free, 40- to 60-minute non-invasive session with no recovery time. Read more.

Houston-based Soliton can use its audio pulse technology to erase scars, cellulite, and tattoos. Photo via soliton.com

Houston company receives FDA approval for tech that uses sound to blast away cellulite

Zip zap

Soliton, a Houston-based technology company, is using audio pulses to make waves in the med-aesthetic industry.

The company, which is licensed from the University of Texas on behalf of MD Anderson, announced that it had received FDA approval earlier this month for its novel and proprietary technology that can reduce the appearance of cellulite.

MIT engineer and doctor Christopher Capelli first developed the basis of the tool while he led the Office of Technology Based Ventures at M.D. Anderson.

Capelli uncovered that he could remove tattoos more effectively by treating the skin with up to 100 waves per second (about five to 10 times greater than other devices on the market), giving birth to the company's proprietary Rapid Acoustic Pulse (RAP) platform.

In 2012 he formed Soliton with co-founder and entrepreneur Walter Klemp, who also founded Houston-based Moleculin, and later brought on Brad Hauser as CEO. By 2019, the company had received FDA approval for using the technology for tattoo removal.

"The original indication was tattoo removal, which is what Chris envisioned," Hauser says. "The sound wave can increase in speed whenever it hits a stiffer or denser material. And tattoo ink is denser, stiffer than the surrounding dermis. That allows a shearing effect of the sound wave to disrupt that tattoo ink and help clear tattoos."

According to Hauser, the team then turned to a second application for the technology in the short-term improvement in the appearance of cellulite. With the use of the technology, patients can undergo a relatively pain-free, 40- to 60-minute non-invasive session with no recovery time.

Brad Hauser is the CEO of Soliton. Photo courtesy of Soliton

"It works similarly in the fibrous septa, which are the tethered bands that create the dimples and cellulite and the uneven skin. Those are stiffer than the surrounding fat cells in the subcutaneous tissue," Hauser says. "That allows the technology to disrupt those fibrous septa and loosen and release the dimples."

In 2021 the company plans to commercialize their product and get it into the hands of dermatologists, plastic surgeons, and other medical professionals for 25 key accounts—potentially including ones Houston—with a plan for a national rollout in 2022.

And they don't plan to stop there.

The company has already announced a partnership for a proof-of-concept study with the U.S. Navy in which Soliton will aim to use its technology to reduce the visibility of fibrotic scars, and more importantly work to increase mobility or playability of scars.

"Often the scar ends up causing restrictions in motion and discomfort with pressure of even clothing and certainly with sleeping," Hauser says. "We believe based on the reduction in volume and the increase in playability that we saw in our original proof-of-concept study that we will be able to bring benefits to these military patients."

Work on the study is slated to begin in the first half of this year.

In the meantime, the company is making headway with treatment of liver fibrosis, announcing just this week that it's pre-clinical study in animals demonstrated positive results and a reduction in effects by 42 percent seven days after the completion of carbon tetrachloride (CCL4) induction. The RAP technology was also named the best new technology by the Aesthetic Industry Association earlier this month.

"It's really targeting collagen fiber and fibroblasts on a cellular level" Hauser says. "Which we think has numerous potential uses in the future."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas cybersecurity co. expands unique train-to-hire model to Houston

job search

It’s increasingly more difficult to ensure the confidentiality, integrity, and availability of proprietary data and information in the ever-changing, ever-evolving digital world.

Cyberattacks, including malware, phishing, and ransomware, are becoming increasingly common and sophisticated, posing a consistent threat to a company’s sustainability and bottom line.

To combat that trend, Nukudo, a San Antonio-based cybersecurity workforce development company, is expanding its initiative to bridge the global cybersecurity talent gap through immersive training and job placement to Houston.

“We saw that there was a need in the market because there's a shortage of skilled manpower within the cybersecurity industry and other digital domains,” says Dean Gefen, CEO of NukuDo. “So, our initial goal was to take a large pool of people and then make them to be fully operational in cybersecurity in the shortest amount of time.”

The company refers to the plan as the “training-to-employment model,” which focuses on providing structured training to select individuals who then acquire the skills and knowledge necessary to secure and maintain fruitful careers.

The company identifies potential associates through its proprietary aptitude test, which recognizes individuals who possess the innate technical acumen and potential for success in various cybersecurity roles, regardless of their level of education.

“We take in people from all walks of life, meaning the program is purely based on the associate’s potential,” Gefen says. “We have people who were previously aircraft engineers, teachers, graphic designers, lawyers, insurance agents and so forth.”

Once selected, associates are trained by cybersecurity experts while gaining hands-on experience through scenario-based learning, enabling them to be deployed immediately as fully operational cybersecurity professionals.

The program training lasts just six months—all paid—followed by three years of guaranteed employment with NukuDo.

While in training, associates are paid $ 4,000 per month; then, they’re compensated by nearly double that amount over the next three years, ultimately pushing their salaries to well into the six figures after completing the entire commitment.

In addition to fostering a diverse talent pipeline in the cybersecurity field, NukuDo is creating a comprehensive solution to address the growing shortage of technical talent in the global workforce.

And arming people with new marketable skills has a litany of benefits, both professional and personal, Gefen says.

“Sometimes, we have associates who go on to make five times their previous salary,” says Gefen. “Add to that fact that we had someone that had a very difficult life beforehand and we were able to put him on a different path. That really hits home for us that we are making a difference.

Nulkudo currently has partnerships with companies such as Accenture Singapore and Singapore Airlines. Gefen says he and his team plans to have a new class of associates begin training every month by next year and take the model to the Texas Triangle (Houston, Austin and Dallas)—then possibly nationwide.

“The great thing about our program is that we train people above the level of possible threat of replacement by artificial intelligence,” Gefen says. “But what we are also doing, and this is due to requirements that we have received from clients that are already hiring our cyber professionals, is that we are now starting to deliver AI engineers and data scientists in other domains.”

“That means that we have added more programs to our cybersecurity program. So, we're also training people in data science and machine learning,” he continues.

All interested candidates for the program should be aware that a college degree is not required. NukuDo is genuinely interested in talented individuals, regardless of their background.

“The minimum that we are asking for is high school graduates,” Gefen says. “They don't need to have a college degree; they just need to have aptitude. And, of course, they need to be hungry to make this change.”

2 Houston universities declared among world’s best in 2026 rankings

Declaring the Best

Two Houston universities are in a class of their own, earning top spots on a new global ranking of the world's best universities.

Rice University and University of Houston are among the top 1,200 schools included in the QS World University Rankings 2026. Ten more schools across Texas make the list.

QS (Quacquarelli Symonds), a London-based provider of higher education data and analytics, compiles the prestigious list each year; the 2026 edition includes more than 1,500 universities from around the world. Factors used to rank the schools include academic reputation; employer reputation; faculty-student ratio; faculty research; and international research, students, and faculty.

In Texas, University of Texas at Austin lands at No. 1 in the state, No. 20 in the U.S., and No. 68 globally.

Houston's Rice University is close behind as Texas' No. 2 school. It ranks 29th in the U.S. and No. 119 in the world. Unlike UT, which fell two spots globally this year (from No. 66 to 68), Rice climbed up the charts, moving from 141st last year to No. 119.

University of Houston impresses as Texas' 4th highest-ranked school. It lands at No. 80 in the U.S. and No. 556 globally, also climbing about 100 spots up the chart.

Rice and UH are on a roll in regional, national, and international rankings this year.

Rice earned top-15 national rankings by both Niche.com and Forbes last fall. Rice claimed No. 1 and UH ranked No. 8 in Texas in U.S. News & World Report's 2025 rankings. Rice also topped WalletHub's 2025 list of the best colleges and universities in Texas for 2025.

More recently, in April, both UH and Rice made U.S. News' 2025 list of top grad schools.

In all, 192 U.S. universities made the 2026 QS World University Rankings — the most of any country. Topping the global list is the Massachusetts Institute of Technology (MIT).

“The results show that while U.S. higher education remains the global leader, its dominance is increasingly challenged by fast-rising emerging systems,” says the QS World University Rankings report. “A decade ago, 32 American universities [were] featured in the world’s top 100; today, that number has dropped to 26, and only 11 of these institutions have improved their position this year."

The 12 Texas universities that appear in the QS World University Rankings 2026 list are:

  • University of Texas at Austin, No. 20 in the U.S. and No. 68 in the world (down from No. 66 last year).
  • Rice University, No. 29 in the U.S. and No. 119 in the world (up from No. 141 last year).
  • Texas A&M University, No. 32 in the U.S. and No. 144 in the world (up from No. 154 last year).
  • University of Houston, No. 80 in the U.S. and No. 556 in the world (up from 651-660 last year).
  • University of Texas at Dallas, No. 85 in the U.S. and No. 597 in the world (down from 596 last year).
  • Texas Tech University, No. 104 in the U.S. and No. 731-740 in the world (unchanged from last year).
  • University of North Texas, No. 123 in the U.S. and No. 901-950 in the world (up from 1,001-1,200 last year)
  • Baylor University, tied for No. 136 in the U.S. and at No. 1,001-1,200 in the world (unchanged from last year).
  • Southern Methodist University, tied for No. 136 in the U.S. and at 1,001-1,200 in the world (unchanged from last year).
  • University of Texas Arlington, tied for No. 136 in the U.S. and at 1,001-1,200 in the world (unchanged from last year).
  • University of Texas at San Antonio, tied for No. 136 in the U.S. and at 1,001-1,200 in the world (unchanged from last year).
  • University of Texas at El Paso, No. 172 in the U.S. and at 1,201-1,400 in the world (down from 1,001-1,200 last year).
---

This article originally appeared on CultureMap.com.

Houston students develop new device to prepare astronauts for outer space

space race

Rice University students from the George R. Brown School of Engineering and Computing designed a space exercise harness that is comfortable, responsive, and adaptable and has the potential to assist with complex and demanding spacewalks.

A group of students—Emily Yao, Nikhil Ashri, Jose Noriega, Ben Bridges and graduate student Jack Kalicak—mentored by assistant professor of mechanical engineering Vanessa Sanchez, modernized harnesses that astronauts use to perform rigorous exercises. The harnesses are particularly important in preparing astronauts for a reduced-gravity space environment, where human muscles and bones atrophy faster than they do on Earth. However, traditional versions of the harnesses had many limitations that included chafing and bruising.

The new harnesses include sensors for astronauts to customize their workouts by using real-time data and feedback. An additional two sensors measure astronauts’ comfort and exercise performance based on temperature and humidity changes during exercise and load distribution at common pressure points.

“Our student-led team addressed this issue by adding pneumatic padding that offers a customized fit, distributes pressure over a large surface area to reduce discomfort or injuries and also seamlessly adapts to load shifts — all of which together improved astronauts’ performance,” Sanchez said in a news release. “It was very fulfilling to watch these young engineers work together to find innovative and tangible solutions to real-world problems … This innovative adjustable exercise harness transforms how astronauts exercise in space and will significantly improve their health and safety during spaceflights.”

The project was developed in response to a challenge posted by the HumanWorks Lab and Life Science Labs at NASA and NASA Johnson Space Center for the 2025 Technology Collaboration Center’s (TCC) Wearables Workshop and University Challenge, where teams worked to solve problems for industry leaders.

Rice’s adaptive harness won the Best Challenge Response Award. It was funded by the National Science Foundation and Rice’s Office of Undergraduate Research and Inquiry.

“This challenge gave us the freedom to innovate and explore possibilities beyond the current harness technology,” Yao added in the release. “I’m especially proud of how our team worked together to build a working prototype that not only has real-world impact but also provides a foundation that NASA and space companies can build and iterate upon.”