Houston-based Soliton, which has created a technology that uses sound to treat cellulite and scars, has been acquired. Photo via soliton.com

A California company has acquired Houston-based Soliton as well as its innovative device that uses sound to eliminate cellulite.

Allergan Aesthetics, an AbbVie company, has announced an agreement to acquire Soliton and its rapid acoustic pulse device RESONICTM, which recently received U.S. Food and Drug Administration clearance for the treatment of cellulite.

The company's team first developed the basis of the tool for tattoo removal and earned FDA clearance for that treatment a few years ago. Christopher Capelli and Walter Klemp co-founded Soliton in 2012.

The acquisition will take Soliton's technology to the next level, says Klemp, who serves as the company's executive chairman.

"Allergan Aesthetics' brand recognition, global footprint, track record and commitment to developing best-in-class aesthetic treatments makes the Company ideally suited to maximize the commercial potential of the RESONICTM rapid acoustic pulse technology," Klemp says in the release.

"I am proud of the passion and accomplishments of the Soliton team and thankful for the ongoing support of our investors which have culminated in this transaction," he continues. "We look forward to working with Allergan Aesthetics to ensure a successful completion of this transaction."

For Carrie Strom, president of Global Allergan Aesthetics and senior vice president at AbbVie, Soliton's solution has a great potential in the market. Soliton's clinical trial data that was submitted to the FDA showed that after a single treatment session, RESONICTM demonstrated significant improvement and strong patient satisfaction with 92.9 percent of subjects agreeing or strongly agreeing their cellulite appeared improved, per the release.

"There is a huge unmet need to address cellulite and effective treatments have been elusive and frustrating for consumers," Strom says in the release. "Soliton's technology offers a new, completely non-invasive approach with clinically-proven results to reduce the appearance of cellulite with no patient downtime.

"The addition of this technology complements Allergan Aesthetics' portfolio of body contouring treatments," she continues. "Health care providers will now have another option to address consumers' aesthetic concerns."

Brad Hauser, CEO of Soliton, previously told InnovationMap that the company's plans for 2021 included focusing on the commercialization of their product and get it into the hands of dermatologists, plastic surgeons, and other medical professionals for 25 key accounts — potentially including ones Houston — with a plan for a national rollout in 2022.

This week's roundup of Houston innovators includes Richard Seline of the Resilience Innovation Hub, Deanna Zhang of Tudor, Pickering, and Holt, and Brad Hauser of Soliton. Courtesy photos

3 Houston innovators to know this week

who's who

Editor's note: In the week's roundup of Houston innovators to know, I'm introducing you to three innovators across industries recently making headlines — from resilience technology to energy innovation.

Richard Seline, co-founder at the Houston-based Resilience Innovation Hub Collaboratory

Richard Seline of Houston-based Resilience Innovation Hub joins the Houston Innovators Podcast to discuss how it's time for the world to see Houston as the resilient city it is. Photo courtesy of ResilientH20

Richard Seline says on this week's episode of the Houston Innovators Podcast, that people are exhausted and these feelings are festering into frustration and anger — and calling for change. The things that need to change, Seline says, includes growing investment and innovation in resilience solutions.

"As a fourth generation Houstonian, it's just so hard to see my hometown get hit persistently with a lot of these weather and other type of disasters," Seline says.

These unprecedented disasters — which are of course occurring beyond Houston and Texas — have also sparked a growing interest in change for insurance companies that have lost a trillion dollars on the United States Gulf Coast over the past seven years, Seline says. Something has got to change regarding preparation and damage mitigation. Read more and stream the podcast.

Deanna Zhang, director of energy technology at Houston-based Tudor, Pickering, Holt & Co.

Deanna Zhang of Tudor, Pickering, Holt & Co. writes a response to the energy crisis that occured in Texas in February. Photo courtesy of TPH

Deanna Zhang specializes in energy tech, and what she witnessed from February's winter weather was basically an epic fail caused by a myriad of issues.

"But it's oversimplifying to say that the only solution to preventing another situation like this is continued or increased reliance on the oil and gas industry," she writes in a guest article for InnovationMap. "What last week ultimately demonstrated was the multitude of technology solutions that needs to scale up to provide us with the best energy reliability and availability." Read more.

Brad Hauser, CEO of Soliton

Houston-based Soliton can use its audio pulse technology to erase scars, cellulite, and tattoos. Photo courtesy of Soliton

A Houston company has created a technology that uses sound to make changes in human skin tissue. Soliton, led by Brad Hauser, is using audio pulses to make waves in the med-aesthetic industry. The company, which is licensed from the University of Texas on behalf of MD Anderson, announced that it had received FDA approval earlier this month for its novel and proprietary technology that can reduce the appearance of cellulite.

"The original indication was tattoo removal," Hauser says. "The sound wave can increase in speed whenever it hits a stiffer or denser material. And tattoo ink is denser, stiffer than the surrounding dermis. That allows a shearing effect of the sound wave to disrupt that tattoo ink and help clear tattoos."

According to Hauser, the team then turned to a second application for the technology in the short-term improvement in the appearance of cellulite. With the use of the technology, patients can undergo a relatively pain-free, 40- to 60-minute non-invasive session with no recovery time. Read more.

Houston-based Soliton can use its audio pulse technology to erase scars, cellulite, and tattoos. Photo via soliton.com

Houston company receives FDA approval for tech that uses sound to blast away cellulite

Zip zap

Soliton, a Houston-based technology company, is using audio pulses to make waves in the med-aesthetic industry.

The company, which is licensed from the University of Texas on behalf of MD Anderson, announced that it had received FDA approval earlier this month for its novel and proprietary technology that can reduce the appearance of cellulite.

MIT engineer and doctor Christopher Capelli first developed the basis of the tool while he led the Office of Technology Based Ventures at M.D. Anderson.

Capelli uncovered that he could remove tattoos more effectively by treating the skin with up to 100 waves per second (about five to 10 times greater than other devices on the market), giving birth to the company's proprietary Rapid Acoustic Pulse (RAP) platform.

In 2012 he formed Soliton with co-founder and entrepreneur Walter Klemp, who also founded Houston-based Moleculin, and later brought on Brad Hauser as CEO. By 2019, the company had received FDA approval for using the technology for tattoo removal.

"The original indication was tattoo removal, which is what Chris envisioned," Hauser says. "The sound wave can increase in speed whenever it hits a stiffer or denser material. And tattoo ink is denser, stiffer than the surrounding dermis. That allows a shearing effect of the sound wave to disrupt that tattoo ink and help clear tattoos."

According to Hauser, the team then turned to a second application for the technology in the short-term improvement in the appearance of cellulite. With the use of the technology, patients can undergo a relatively pain-free, 40- to 60-minute non-invasive session with no recovery time.

Brad Hauser is the CEO of Soliton. Photo courtesy of Soliton

"It works similarly in the fibrous septa, which are the tethered bands that create the dimples and cellulite and the uneven skin. Those are stiffer than the surrounding fat cells in the subcutaneous tissue," Hauser says. "That allows the technology to disrupt those fibrous septa and loosen and release the dimples."

In 2021 the company plans to commercialize their product and get it into the hands of dermatologists, plastic surgeons, and other medical professionals for 25 key accounts—potentially including ones Houston—with a plan for a national rollout in 2022.

And they don't plan to stop there.

The company has already announced a partnership for a proof-of-concept study with the U.S. Navy in which Soliton will aim to use its technology to reduce the visibility of fibrotic scars, and more importantly work to increase mobility or playability of scars.

"Often the scar ends up causing restrictions in motion and discomfort with pressure of even clothing and certainly with sleeping," Hauser says. "We believe based on the reduction in volume and the increase in playability that we saw in our original proof-of-concept study that we will be able to bring benefits to these military patients."

Work on the study is slated to begin in the first half of this year.

In the meantime, the company is making headway with treatment of liver fibrosis, announcing just this week that it's pre-clinical study in animals demonstrated positive results and a reduction in effects by 42 percent seven days after the completion of carbon tetrachloride (CCL4) induction. The RAP technology was also named the best new technology by the Aesthetic Industry Association earlier this month.

"It's really targeting collagen fiber and fibroblasts on a cellular level" Hauser says. "Which we think has numerous potential uses in the future."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston neighbor named richest small town in Texas for 2025

Ranking It

Affluent Houston neighbor Bellaire is cashing in as the richest small town in Texas for 2025, according to new study from GoBankingRates.

The report, "The Richest Small Town in Every State," used data from the U.S. Census Bureau's American Community Survey to determine the 50 richest small towns in America based on their median household income.

Of course, Houstonians realize that describing Bellaire as a "small town" is a bit of misnomer. Located less than 10 miles from downtown and fully surrounded by the City of Houston, Bellaire is a wealthy enclave that boasts a population of just over 17,000 residents. These affluent citizens earn a median $236,311 in income every year, which GoBankingRates says is the 11th highest household median income out of all 50 cities included in the report.

The average home in this city is worth over $1.12 million, but Bellaire's lavish residential reputation often attracts properties with multimillion-dollar price tags.

Bellaire also earned a shining 81 livability score for its top quality schools, health and safety, commute times, and more. The livability index, provided by Toronto, Canada-based data analytics and real estate platform AreaVibes, said Bellaire has "an abundance of exceptional local amenities."

"Among these are conveniently located grocery stores, charming coffee shops, diverse dining options and plenty of spacious parks," AreaVibes said. "These local amenities contribute significantly to its overall appeal, ensuring that [residents'] daily needs are met and offering ample opportunities for leisure and recreation."

Earlier in 2025, GoBankingRates ranked Bellaire as the No. 23 wealthiest suburb in America, and it's no stranger to being named on similar lists comparing the richest American cities.

---

This article originally appeared on CultureMap.com.

How a Houston startup is taking on corrosion, a costly climate threat

now streaming

Corrosion is not something most people think about, but for Houston's industrial backbone pipelines, refineries, chemical plants, and water infrastructure, it is a silent and costly threat. Replacing damaged steel and overusing chemicals adds hundreds of millions of tons of carbon emissions every year. Despite the scale of the problem, corrosion detection has barely changed in decades.

In a recent episode of the Energy Tech Startups Podcast, Anwar Sadek, founder and CEO of Corrolytics, explained why the traditional approach is not working and how his team is delivering real-time visibility into one of the most overlooked challenges in the energy transition.

From Lab Insight to Industrial Breakthrough

Anwar began as a researcher studying how metals degrade and how microbes accelerate corrosion. He quickly noticed a major gap. Companies could detect the presence of microorganisms, but they could not tell whether those microbes were actually causing corrosion or how quickly the damage was happening. Most tests required shipping samples to a lab and waiting months for results, long after conditions inside the asset had changed.

That gap inspired Corrolytics' breakthrough. The company developed a portable, real-time electrochemical test that measures microbial corrosion activity directly from fluid samples. No invasive probes. No complex lab work. Just the immediate data operators can act on.

“It is like switching from film to digital photography,” Anwar says. “What used to take months now takes a couple of hours.”

Why Corrosion Matters in Houston's Energy Transition

Houston's energy transition is a blend of innovation and practicality. While the world builds new low-carbon systems, the region still depends on existing industrial infrastructure. Keeping those assets safe, efficient, and emission-conscious is essential.

This is where Corrolytics fits in. Every leak prevented, every pipeline protected, and every unnecessary gallon of biocide avoided reduces emissions and improves operational safety. The company is already seeing interest across oil and gas, petrochemicals, water and wastewater treatment, HVAC, industrial cooling, and biofuels. If fluids move through metal, microbial corrosion can occur, and Corrolytics can detect it.

Because microbes evolve quickly, slow testing methods simply cannot keep up. “By the time a company gets lab results, the environment has changed completely,” Anwar explains. “You cannot manage what you cannot measure.”

A Scientist Steps Into the CEO Role

Anwar did not plan to become a CEO. But through the National Science Foundation's ICorps program, he interviewed more than 300 industry stakeholders. Over 95 percent cited microbial corrosion as a major issue with no effective tool to address it. That validation pushed him to transform his research into a product.

Since then, Corrolytics has moved from prototype to real-world pilots in Brazil and Houston, with early partners already using the technology and some preparing to invest. Along the way, Anwar learned to lead teams, speak the language of industry, and guide the company through challenges. “When things go wrong, and they do, it is the CEO's job to steady the team,” he says.

Why Houston

Relocating to Houston accelerated everything. Customers, partners, advisors, and manufacturing talent are all here. For industrial and energy tech startups, Houston offers an ecosystem built for scale.

What's Next

Corrolytics is preparing for broader pilots, commercial partnerships, and team growth as it continues its fundraising efforts. For anyone focused on asset integrity, emissions reduction, or industrial innovation, this is a company to watch.

Listen to the full conversation with Anwar Sadek on the Energy Tech Startups Podcast to learn more:

---

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.

This article originally appeared on our sister site, EnergyCapitalHTX.com.

These 50+ Houston scientists rank among world’s most cited

science stars

Fifty-one scientists and professors from Houston-area universities and institutions were named among the most cited in the world for their research in medicine, materials sciences and an array of other fields.

The Clarivate Highly Cited Researchers considers researchers who have authored multiple "Highly Cited Papers" that rank in the top 1percent by citations for their fields in the Web of Science Core Collection. The final list is then determined by other quantitative and qualitative measures by Clarivate's judges to recognize "researchers whose exceptional and community-wide contributions shape the future of science, technology and academia globally."

This year, 6,868 individual researchers from 60 different countries were named to the list. About 38 percent of the researchers are based in the U.S., with China following in second place at about 20 percent.

However, the Chinese Academy of Sciences brought in the most entries, with 258 researchers recognized. Harvard University with 170 researchers and Stanford University with 141 rounded out the top 3.

Looking more locally, the University of Texas at Austin landed among the top 50 institutions for the first time this year, tying for 46th place with the Mayo Clinic and University of Minnesota Twin Cities, each with 27 researchers recognized.

Houston once again had a strong showing on the list, with MD Anderson leading the pack. Below is a list of the Houston-area highly cited researchers and their fields.

UT MD Anderson Cancer Center

  • Ajani Jaffer (Cross-Field)
  • James P. Allison (Cross-Field)
  • Maria E. Cabanillas (Cross-Field)
  • Boyi Gan (Molecular Biology and Genetics)
  • Maura L. Gillison (Cross-Field)
  • David Hong (Cross-Field)
  • Scott E. Kopetz (Clinical Medicine)
  • Pranavi Koppula (Cross-Field)
  • Guang Lei (Cross-Field)
  • Sattva S. Neelapu (Cross-Field)
  • Padmanee Sharma (Molecular Biology and Genetics)
  • Vivek Subbiah (Clinical Medicine)
  • Jennifer A. Wargo (Molecular Biology and Genetics)
  • William G. Wierda (Clinical Medicine)
  • Ignacio I. Wistuba (Clinical Medicine)
  • Yilei Zhang (Cross-Field)
  • Li Zhuang (Cross-Field)

Rice University

  • Pulickel M. Ajayan (Materials Science)
  • Pedro J. J. Alvarez (Environment and Ecology)
  • Neva C. Durand (Cross-Field)
  • Menachem Elimelech (Chemistry and Environment and Ecology)
  • Zhiwei Fang (Cross-Field)
  • Naomi J. Halas (Cross-Field)
  • Jun Lou (Materials Science)
  • Aditya D. Mohite (Cross-Field)
  • Peter Nordlander (Cross-Field)
  • Andreas S. Tolias (Cross-Field)
  • James M. Tour (Cross-Field)
  • Robert Vajtai (Cross-Field)
  • Haotian Wang (Chemistry and Materials Science)
  • Zhen-Yu Wu (Cross-Field)

Baylor College of Medicine

  • Nadim J. Ajami (Cross-Field)
  • Biykem Bozkurt (Clinical Medicine)
  • Hashem B. El-Serag (Clinical Medicine)
  • Matthew J. Ellis (Cross-Field)
  • Richard A. Gibbs (Cross-Field)
  • Peter H. Jones (Pharmacology and Toxicology)
  • Sanjay J. Mathew (Cross-Field)
  • Joseph F. Petrosino (Cross-Field)
  • Fritz J. Sedlazeck (Biology and Biochemistry)
  • James Versalovic (Cross-Field)

University of Houston

  • Zhifeng Ren (Cross-Field)
  • Yan Yao (Cross-Field)
  • Yufeng Zhao (Cross-Field)
  • UT Health Science Center Houston
  • Hongfang Liu (Cross-Field)
  • Louise D. McCullough (Cross-Field)
  • Claudio Soto (Cross-Field)

UTMB Galveston

  • Erez Lieberman Aiden (Cross-Field)
  • Pei-Yong Shi (Cross-Field)

Houston Methodist

  • Eamonn M. M. Quigley (Cross-Field)