Houston scientists are developing a soft sleep cap that tracks and stimulates the brain's "cleaning cycles" linked to Alzheimer’s disease and other dementias. Photo via Getty Images.

Researchers and scientists at Rice University and Houston Methodist are developing a “sleep cap” that aims to protect the brain against dementia and other similar diseases by measuring and improving deep sleep.

The project is a collaboration between Rice University engineering professors Daniel Preston, Vanessa Sanchez and Behnaam Aazhang; and Houston Methodist neurologist Dr. Timea Hodics and Dr. Gavin Britz, director of the Houston Methodist Neurological Institute and chairman of the Department of Neurosurgery.

According to Rice, deep sleep is essential for clearing waste products from the brain and nightly “cleaning cycles” help remove toxic proteins. These toxic proteins, like amyloids, can accumulate during the day and are linked to Alzheimer’s disease and other neurological issues.

Aazhang, director of the Rice Neuroengineering Initiative, and his team are building a system that not only tracks the brain’s clearing process but can also stimulate it, improving natural mechanisms that protect against neurodegeneration.

Earlier proof-of-concept versions of the caps successfully demonstrated the promise of this approach; however, they were rigid and uncomfortable for sleep.

Preston and Sanchez will work to transform the design of the cap into a soft, lightweight, textile-based version to make sleep easier, while also allowing the caps to be customizable and tailored for each patient.

“One of the areas of expertise we have here at Rice is designing wearable devices from soft and flexible materials,” Preston, an assistant professor of mechanical engineering, said in a news release. “We’ve already shown this concept works in rigid device prototypes. Now we’re building a soft, breathable cap that people can comfortably wear while they sleep.”

Additionally, the research team is pursuing ways to adapt their technology to measure neuroinflammation and stimulate the brain’s natural plasticity. Neuroinflammation, or swelling in the brain, can be caused by injury, stroke, disease or lifestyle factors and is increasingly recognized as a driver of neurodegeneration, according to Rice.

“Our brain has an incredible ability to rewire itself,” Aazhang added in the release. “If we can harness that through technology, we can open new doors for treating not just dementia but also traumatic brain injury, stroke, Parkinson’s disease and more.”

The project represents Rice’s broader commitment to brain health research and its support for the Dementia Prevention Research Institute of Texas (DPRIT), which passed voter approval last week. The university also recently launched its Rice Brain Institute.

As part of the project, Houston Methodist will provide access to clinicians and patients for early trials, which include studies on patients who have suffered traumatic brain injury and stroke.

“We have entered an era in neuroscience that will result in transformational cures in diseases of the brain and spinal cord,” Britz said in the release. “DPRIT could make Texas the hub of these discoveries.”
Vicky Yao and Qiliang Lai. Photo courtesy of Rice University

Rice University scientists invent new algorithm to fight Alzheimer's

A Seismic Breakthrough

A new breakthrough from researchers at Rice University could unlock the genetic components that determine several human diseases such as Parkinson's and Alzheimer's.

Alzheimer's disease affected 57 million people worldwide in 2021, and cases in the United States are expected to double in the next couple of decades. Despite its prevalence and widespread attention of the condition, the full mechanisms are still poorly understood. One hurdle has been identifying which brain cells are linked to the disease.

For years, it was thought that the cells most linked with Alzheimer's pathology via DNA evidence were microglia, infection-fighting cells in the brain. However, this did not match with actual studies of Alzheimer's patients' brains. It's the memory-making cells in the human brain that are implicated in the pathology.

To prove this link, researchers at Rice, alongside Boston University, developed a computational algorithm called “Single-cell Expression Integration System for Mapping Genetically Implicated Cell Types," or SEISMIC. It allows researchers to zero in on specific neurons linked to Alzheimer's, the first of its kind. Qiliang Lai, a Rice doctoral student and the lead author of a paper on the discovery published in Nature Communications, believes that this is an important step in the fight against Alzheimer's.

“As we age, some brain cells naturally slow down, but in dementia — a memory-loss disease — specific brain cells actually die and can’t be replaced,” said Lai. “The fact that it is memory-making brain cells dying and not infection-fighting brain cells raises this confusing puzzle where DNA evidence and brain evidence don’t match up.”

Studying Alzheimer's has been hampered by the limitations of computational analysis. Genome-wide association studies (GWAS) and single-cell RNA sequencing (scRNA-seq) map small differences in the DNA of Alzheimer's patients. The genetic signal in these studies would often over-emphasize the presence of infection fighting cells, essentially making the activity of those cells too "loud" statistically to identify other factors. Combined with greater specificity in brain regional activity, SEISMIC reduces the data chatter to grant a clearer picture of the genetic component of Alzheimer's.

“We built our SEISMIC algorithm to analyze genetic information and match it precisely to specific types of brain cells,” Lai said. “This enables us to create a more detailed picture of which cell types are affected by which genetic programs.”

Though the algorithm is not in and of itself likely to lead to a cure or treatment for Alzheimer's any time soon, the researchers say that SEISMIC is already performing significantly better than existing tools at identifying important disease-relevant cellular signals more clearly.

“We think this work could help reconcile some contradicting patterns in the data pertaining to Alzheimer’s research,” said Vicky Yao, assistant professor of computer science and a member of the Ken Kennedy Institute at Rice. “Beyond that, the method will likely be broadly valuable to help us better understand which cell types are relevant in different complex diseases.”

---

This article originally appeared on CultureMap.com.

The trial, known as ADO2, will utilize OmniScience's recently developed product, Vivo, which uses generative AI to centralize and analyze clinical trial data in real time. Photo omniscience.bio

Houston AI data firm partners on Alzheimer’s clinical trial

now testing

Houston data science firm OmniScience announced this month that it has partnered with Florida-based INmune Bio (NASDAQ: INMB) on a global Phase 2 Alzheimer’s disease clinical trial.

The trial, known as ADO2, will utilize OmniScience's recently developed product, Vivo, which uses generative AI to centralize and analyze clinical trial data in real time, according to a release. The two companies also partnered during Vivo’s development and recent roll-out.

"OmniScience and INmune Bio share a vision to transform how clinical trial teams engage with data – transforming data into knowledge in real time and informing decisions that increase the probability of success,” Angela Holmes, CEO of OmniScience, says in a statement. “As our partnership moves forward, we’re gaining further insights from the INmune team that we can integrate into Vivo’s roadmap. We look forward to our continued mutual success.”

The ADO2 trial will investigate INmune Bio's clinical-stage biotechnology XPro in patients with mild cognitive impairment or Alzheimer’s disease with brain inflammation, according to its website. Its products are focused on "restoring function in the body's innate immune system to fight disease."

The trial is overenrolled with 208 patients diagnosed with mild Alzheimer’s disease or mild cognitive impairment. The top-line results are expected to be released in Q2 2025.

"A global trial of this size is vast, and Vivo will be critical in our ability to analyze cognitive results,” Tara Lehner, INmune Bio’s vice president of clinical operations, says in the statement. “With genAI provided by Vivo, we can amplify our clinical teams’ capabilities, turning complex data into actionable insights at unprecedented speed, which means we can get answers—and treatments—to patients faster.”

INmune will be able to use OmniScience's Vivo product to unify data from electronic data capture, clinical trial management systems, patient-reported outcomes, clinical outcome assessments, labs, wearables, safety databases and more, according to the statement. The product has been shown to improve data quality and visualizations and reduce the reliance on spreadsheet-based data analysis during clinical trials.

Omniscience was originally founded in 2017, then known as Mercury Data Science. It rebranded and changed its name earlier this year. Holmes was named CEO in 2022.

Omniscience's Vivo product recently won first place in the CNS Summit 2024 Innovation Showcase in Boston and the Blue Whale Ribbon at the inaugural Whale Tank pitch competition during the 2024 Innovation Network Gathering (ING) in West Chester, Pennsylvania.

Coya Therapeutics is looking into how a trendy weight loss drug could complement its Alzheimer’s disease treatment. Photo via Getty Images

Houston therapeutics innovator looks into GLP-1 drugs for Alzheimer’s treatment

drug discovery

Glucagon-like peptide 1, or GLP-1, agonists are all the rage right now thanks to drugs like Ozempic and Wegovy. Though they’re currently being prescribed for diabetes and weight loss, a Houston company reports that it may have found another use for GLP-1s.

Coya Therapeutics, a publicly traded clinical-stage biotechnology company, has filed intellectual property protection for a combination of its proprietary COYA 301 and GLP-1. Coya’s team believes that combining COYA 301, a low-dose interleukin-2 (IL-2) intended to enhance the anti-inflammatory function of regulatory T cells (Tregs), with GLP-1 could be a game-changer in the fight against Alzheimer’s disease.

How does GLP-1 amplify the positive results already noted for COYA 301? The company will soon release phase 2 data for IL-2 in patients with Alzheimer's. Through distinct mechanisms, the pair of drugs could synergistically combat inflammation. That means that neurodegenerative maladies such as Alzheimer’s are just the beginning. The drug combination could also fight autoimmune and metabolic conditions. This isn’t the first combination therapy for Coya — Coya 302 is a pairing of LD IL-2 and CTLA-4 Ig that has also racked up some success in human trials.

According to Coya’s CEO, Howard Berman, “We believe that combination immunotherapy approaches will evolve to play a meaningful role in treating complex immune-based diseases that are driven by a host of pathophysiologic mechanisms.”

He goes on to add that the company has already had success with targeting “multiple, independent, and non-overlapping immune pathways simultaneously” with COYA 302, a combination of COYA 301 and CTLA-4 Ig, commercially known as Abatacept. That pairing is currently being evaluated in numerous neurodegenerative disease models, such as Amyotrophic Lateral Sclerosis (ALS), Alzheimer’s, and Parkinson’s diseases.

“We will continue to expand our portfolio with additional synergistic drug combinations with COYA 301,” Berman adds.

The Belfer family, led by oil tycoon Robert Belfer, had donated an additional $20 million to the Belfer Neurodegeneration Consortium. Photo via mdanderson.org

$20M donation drives neurodegeneration research in Houston

big impact

Neurodegeneration is one of the cruelest ways to age, but one recent donation is invigorating research with the goal of eradicating diseases like Alzheimer’s.

This month, Laurence Belfer announced that his family, led by oil tycoon Robert Belfer, had donated an additional $20 million to the Belfer Neurodegeneration Consortium, a multi-institutional initiative that targets the study and treatment of Alzheimer’s disease.

This latest sum brings the family’s donations to BNDC to $53.5 million over a little more than a decade. The Belfer family’s recent donation will be matched by institutional philanthropic efforts, meaning BNDC will actually be $40 million richer.

BNDC was formed in 2012 to help scientists gain stronger awareness of neurodegenerative disease biology and its potential treatments. It incorporates not only The University of Texas MD Anderson Cancer Center, but also Baylor College of Medicine, Massachusetts Institute of Technology (MIT) and Icahn School of Medicine at Mount Sinai.

It is the BNDC’s lofty objective to develop five new drugs for Alzheimer’s disease and related disorders over the next 10 years, with two treatments to demonstrate clinical efficacy.

“Our goal is ambitious, but having access to the vast clinical trial expertise at MD Anderson ensures our therapeutics can improve the lives of patients everywhere,” BNDC Executive Director Jim Ray says in a press release. “The key elements for success are in place: a powerful research model, a winning collaborative team and a robust translational pipeline, all in the right place at the right time.”

It may seem out of place that this research is happening at MD Anderson, but scientists are delving into the intersection between cancer and neurological disease through the hospital’s Cancer Neuroscience Program.

“Since the consortium was formed, we have made tremendous progress in our understanding of the molecular and genetic basis of neurodegenerative diseases and in translating those findings into effective targeted drugs and diagnostics for patients,” Ray continues. “Yet, we still have more work to do. Alzheimer's disease is already the most expensive disease in the United States. As our population continues to age, addressing quality-of-life issues and other challenges of treating and living with age-associated diseases must become a priority.”

And for the magnanimous Belfer family, it already is.

Houston Methodist's Nantz National Alzheimer Center received a $1 million donation to continue research in neurodegenerative diseases. Photo via Houston Methodist

Houston hospital snags $1M to advance Alzheimer’s research

money moves

Thanks to a recent donation, Houston Methodist is setting up an endowment to support research in neurodegenerative diseases.

Susan and William “Dub” Henning, Jr. have committed to a $1 million gift to Houston Methodist to support Alzheimer’s research at the Nantz National Alzheimer Center at the hospital. This gift will be used to create the Susan and William Henning Jr. Neurodegenerative Research Endowment and in response, a NNAC family room will be named in memory of Dub’s parents, Lena and William Henning.

“Knowing the impact that Alzheimer’s can have not only on patients, but also on the immediate and extended family members experiencing the disease inspired us to support the work being done at the Nantz National Alzheimer Center,” says Dub Henning in a news release. “We want to give hope to families struggling with this disease and contribute to ultimately finding a cure.”

Every year, the NNAC — led by Joseph C. Masdeu — treats thousands of patients looking to prevent Alzheimer’s disease, slow memory loss progression, and improve their quality of life. In 2021 alone, the center provided more than 4,000 patient visits. The fresh funding will allow for Dr. Masdeu's research projects — including more than 26 current studies, 14 in clinical trials and 12 studies to clarify the nature of diseases causing dementia — to continue the important work.

“One of our clinical trials will determine the effects of exercise in preventing deposits of amyloid and tau, two of the proteins that accumulate in the brain of people living with Alzheimer’s disease, and we’re also exploring the role of proper sleep in disease development,” says Masdeu in the release. “Among other studies, we are collaborating with Baylor College of Medicine to define genetic and chemical factors predisposing to the accumulation of amyloid and tau in the brain of people at all stages of the Alzheimer’s spectrum.

"These promising developments would not be possible without the compassion and generosity of community supporters like the Henning family," he continues.

Susan and William “Dub” Henning, Jr. gave a $1 million gift to Houston Methodist. Photo courtesy of Houston Methodist

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston scores $120M in new cancer research and prevention grants

cancer funding

The Cancer Prevention and Research Institute of Texas has granted more than $120 million to Houston organizations and companies as part of 73 new awards issued statewide.

The funds are part of nearly $154 million approved by the CPRIT's governing board earlier this month, bringing the organization's total investment in cancer prevention and research to more than $4 billion since its inception.

“Today marks an important milestone for CPRIT and for every Texan affected by cancer,” CEO Kristen Doyle said in a news release. “Texas has invested $4 billion in the fight against one of the world’s greatest public health challenges. Over 16 years, that support has helped Texas lead the search for breakthrough treatments, develop new cancer-fighting drugs and devices, and—most importantly—save tens of thousands of lives through early cancer detection and prevention. Every Texan should know this effort matters, and we’re not finished yet. Together, we will conquer cancer.”

A portion of the funding will go toward recruiting leading cancer researchers to Houston. CPRIT granted $5 million to bring John Quackenbush to Baylor College of Medicine. Quackenbush comes from the Harvard T.H. Chan School of Public Health and is an expert in computational and systems biology. His research focuses on complex genomic data to understand cancer and develop targeted therapies.

The University of Texas M.D. Anderson Cancer Center also received $3 million to recruit Irfan Asangani, an associate professor at the University of Pennsylvania Perelman School of Medicine. His research focuses on how chromatin structure and epigenetic regulation drive the development and progression of cancer, especially prostate cancer.

Other funds will go towards research on a rare, aggressive kidney cancer that impacts children and young adults; screening programs for breast and cervical cancer; and diagnostic technology.

In total, cancer grants were given to:

  • The University of Texas M.D. Anderson Cancer Center: $29.02 million
  • Baylor College of Medicine: $15.04 million
  • The University of Texas Health Science Center at Houston: $9.37 million
  • Texas A&M University System Health Science Center: $1.2 million
  • University of Houston: $900,000

Additional Houston-based companies landed grants, including:

  • Crossbridge Bio Inc.: $15.01 million
  • OncoMAGNETx Inc.: $13.97 million
  • Immunogenesis Inc.: $10.85 million
  • Diakonos Oncology Corporation: $7.16 million
  • Iterion Therapeutics Inc.: $7.13 million
  • NovaScan Inc.: $3.7 million
  • EMPIRI Inc.: $2.59 million
  • Air Surgical Inc.: $2.58 million
  • Light and Salt Association: $2.45 million

See the full list of awards here.

U.S. News names 5 Houston suburbs as the best places to retire in 2026

Retirement Report

Houston-area suburbs should be on the lookout for an influx of retirees in 2026. A new study by U.S. News and World Report has declared The Woodlands and Spring as the fourth and fifth best cities to retire in America, with three other local cities making the top 25.

The annual report, called "250 Best Places to Retire in the U.S. in 2026" initially compared 850 U.S. cities, and narrowed the list down to a final 250 cities (up from 150 previously). Each locale was analyzed across six indexes: quality of life for individuals reaching retirement age, value (housing affordability and cost of living), health care quality, tax-friendliness for retirees, senior population and migration rates, and the strength of each city's job market.

Midland, Michigan was crowned the No. 1 best place to retire in 2026. The remaining cities that round out the top five are Weirton, West Virginia (No. 2) and Homosassa Springs, Florida (No. 3).

According to U.S. News, about 15 percent of The Woodlands' population is over the age of 65. The median household income in this suburb is $139,696, far above the national average median household income of $79,466.

Though The Woodlands has a higher cost of living than many other places in the country, the report maintains that the city "offers a higher value of living compared to similarly sized cities."

"If you want to buy a house in The Woodlands, the median home value is $474,279," the city's profile on U.S. News says. "And if you're a renter, you can expect the median rent here to be $1,449." For comparison, the report says the national average home value is $370,489.

Spring ranked as the fifth best place to retire in 2026, boasting a population of more than 68,000 residents, 11 percent of whom are seniors. This suburb is located less than 10 miles south of The Woodlands, while still being far enough away from Houston (about 25 miles) for seniors to escape big city life for the comfort of a smaller community.

"Retirees are prioritizing quality of life over affordability for the first time since the beginning of the COVID-19 pandemic," said U.S. News contributing editor Tim Smart in a press release.

The median home value in Spring is lower than the national average, at $251,247, making it one of the more affordable places to buy a home in the Houston area. Renters can expect to pay a median $1,326 in monthly rent, the report added.

Elsewhere in Houston, Pearland ranked as the 17th best place to retire for 2026, followed by Conroe (No. 20) and League City (No. 25).

Other Texas cities that ranked among the top 50 best places to retire nationwide include Victoria (No. 12), San Angelo (No. 28), and Flower Mound (No. 37).

The top 10 best U.S. cities to retire in 2026 are:

  • No. 1 – Midland, Michigan
  • No. 2 – Weirton, West Virginia
  • No. 3 – Homosassa Springs, Florida
  • No. 4 – The Woodlands, Texas
  • No. 5 – Spring, Texas
  • No. 6 – Rancho Rio, New Mexico
  • No. 7 – Spring Hill, Florida
  • No. 8 – Altoona, Pennsylvania
  • No. 9 – Palm Coast, Florida
  • No. 10 – Lynchburg, Virginia
---

This article originally appeared on CultureMap.com.

Micro-nuclear reactor to launch at Texas A&M innovation campus in 2026

nuclear pilot

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.