Houston-area researchers are innovating health and wellness solutions every day — even focusing on non-pandemic-related issues. Getty Images

Researchers across the world are coming up with innovative breakthroughs regarding the coronavirus, but Houston research institutions are also making health and wellness discoveries outside of COVID-19.

Here are three from Houston researchers from a muscular atrophy study from outer space to a research project that might allow blind patients to "see."

Houston Methodist's research on muscular atrophy in astronauts

Scientists are studying the effect of certain drugs to help preserve muscles in astronauts. Photo courtesy of Houston Methodist/Facebook

Houston Methodist researcher Alessandro Grattoni and his team published research on muscular atrophy in astronauts. The research was published in Advanced Therapeutics and focused on his 2017 RR-6 muscle atrophy study that was conducted on the International Space Station.

While the current standard practice for astronauts maintaining their muscles is working out over two hours a day, the research found that use of drugs could also help preserve muscles. On a SpaceX refuel mission, mice that were implanted with a "Nanofluidic Delivery System" were sent up to space and monitored, according to a report. The device gradually released small doses of formoterol, an FDA approved drug for use in bronchodilation that has also been shown to stimulate increased muscle mass.

University of Houston researcher tracking fear response to improve mental health treatment

The research could help advance wearable devices. Photo via uh.edu

University of Houston researchers are looking into the way the body responds to fear in order to enhance mental health treatment. Rose Faghih, assistant professor of electrical and computer engineering, and doctoral student Dilranjan Wickramasuriya in the Computational Medicine Lab (CML) are leading the project.

"We developed a mixed filter algorithm to continuously track a person's level of sympathetic nervous system activation using skin conductance and heart rate measurements," writes Faghih in the journal PLOS One. "This level of sympathetic activation is closely tied to what is known as emotional arousal or sympathetic arousal."

When this sympathetic nervous system is activated — sometimes known as the "fight or flight" response — the heart beats faster and more oxygen is delivered to the muscles, according to a press release. Then, the body begins to sweat in order to cool down.

"Using measurements of the variations in the conductivity of the skin and the rate at which the heart beats, and by developing mathematical models that govern these relationships, CML researchers have illustrated that the sympathetic nervous system's activation level can be tracked continuously," reports Faghih.

This algorithm could be used in a wearable electronic device that could be worn by a patient diagnosed with a fear or anxiety disorder.

Baylor College of Medicine's vision-restoring research

What if a device could see for you? Photo from Pexels

When someone loses their vision, it's likely due to damage to the eyes or optic nerve. However, the brain that interprets what they eyes sees, works perfectly fine. But researchers from Baylor College of Medicine have worked on a thesis that a device with a camera could be designed and implemented to do the seeing for the blind patient.

"When we used electrical stimulation to dynamically trace letters directly on patients' brains, they were able to 'see' the intended letter shapes and could correctly identify different letters," says Dr. Daniel Yoshor, professor and chair of neurosurgery in a press release. "They described seeing glowing spots or lines forming the letters, like skywriting."

Through a study supported by the National Eye Institute with both sighted and blind people using implanted devices, the investigators determined that the process was promising. According to the release, the researchers identified several obstacles must be overcome before this technology could be implemented in clinical practice.

"The primary visual cortex, where the electrodes were implanted, contains half a billion neurons. In this study we stimulated only a small fraction of these neurons with a handful of electrodes," says said Dr. Michael Beauchamp, professor and in neurosurgery, in the release.

"An important next step will be to work with neuroengineers to develop electrode arrays with thousands of electrodes, allowing us to stimulate more precisely. Together with new hardware, improved stimulation algorithms will help realize the dream of delivering useful visual information to blind people."

Houston researchers are commercializing their organ 3D printing technology, a local hospital has a tiny medical device with a big impact, and more in health tech. Jordan Miller/Rice University

3 health technologies developed in Houston that are changing the industry

Game changers

There's a huge opportunity for breakthrough medical technology in Houston thanks in large part to major universities, the Texas Medical Center, and other resources within health care startups.

From a new tiny implant that can deliver medicine into the patient remotely to printable human tissue, here are three health technologies coming out of Houston innovators to look out for.

Houston Methodist's tiny drug delivery implant

This tiny implant can have a big effect on patients. Courtesy of Houston Methodist

Houston Methodist nanomedicine researchers have developed an implant the size of a grape that can deliver medicine via a remote control. The device has applications in arthritis, diabetes, and heart disease treatment.

The battery-powered nanochannel deliver system uses Bluetooth technology and can dole out continuous, predetermined dosages for up to a year without refills. A proof-of-concept for the device published in Lab on a Chip.

"We see this universal drug implant as part of the future of health care innovation," says Alessandro Grattoni, chair of the nanomedicine department at Houston Methodist. "Some chronic disease drugs have the greatest benefit of delivery during overnight hours when it's inconvenient for patients to take oral medication. This device could vastly improve their disease management and prevent them from missing doses, simply with a medical professional overseeing their treatment remotely."

The devices can be programed for different dosage sizes and different release settings, which affect the voltage for the medicine delivery.

Houston Methodist has a number of new technologies it's introduced into its hospital system — click here to read about a few more.

NurseDash's resourceful scheduling tool

Houston-based NurseDash is the Uber of staffing nursing shifts in medical facilities. Photo via nursedash.com

Filling open nursing shifts has always been a challenge for hospitals and medical centers, and they've been forced to rely on outsourced companies to coordinate nurses to fill the shifts. NurseDash puts the power back in the hands of freelance nurses and the medical institutions that want to hire them.

Andy Chen, former CFO for Nobilis Health Corporation and co-founder of NurseDash, says the standard practice is hiring these agencies to fill shifts, and, while they promise to send someone, they don't even know who they'll be sending for a shift just hours away. This antiquated system prioritizes who comes in first, rather than a nurse's specialties or qualifications.

Since its debut, NurseDash, which is based in Houston's Galleria Area, has attracted 40 facilities in Houston, including hospitals, surgery centers, and senior living, and about 400 nurses. Chen says he isn't sure just what to call his technology yet, but compares it to the ride hailing of Uber or Lyft and calls it "a virtual bulletin board."

The company has already expanded beyond Houston to northeast Ohio, which the founders say has a similar competitive dynamic to the Houston market. The next goal is to hit the rest of the top 10 largest cities in the United States. To read more about the app and startup, click here.

Volumetric's human tissue-printing technology

Rice University bioengineer Daniel Sazer prepares a scale-model of a lung-mimicking air sac for testing. Jeff Fitlow/Rice University

In a world where organ transplants means an incredible amount of time, money, and patience, there might soon be another option on the operating table. Volumetric is a startup that came out of a human tissue-printing technology developed at Rice University.

Jordan Millar developed the 3D printer in his lab at Rice, and still has ongoing research within the technologies. However, Miller says he very strategically chose to launch a for-profit company in 2018 — mainly, to provide access.

"If we want to do translational research, commercialization is important," reasons Miller. "We need to build the market to get that technology into the world."

Right now, the device is printing scaled down organs, and a contraption that looks a bit like a futuristic beehive, graced the cover of the May 3 issue of the journal Science. It's a working air sac complete with blood vessels, the beginnings of a technology that is perhaps only a decade from being implanted in humans. To read more about Volumetric, click here.


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston biotech company tests hard-to-fight cancer therapeutics

fighting cancer

A Houston-based, female-founded biotech company has developed a treatment that could prove to be an effective therapy for a rare blood cancer.

Cellenkos Therapeutics has completed promising Phase 1b testing of its Treg cell therapy, CK0804, in the fight against myelofibrosis. According to a news release from the Cellenkos team, the use of its cord-blood-derived therapeutics could signal a paradigm shift for the treatment of this hard-to-fight cancer.

Cellenkos was founded by MD Anderson Cancer Center physician and professor Simrit Parmar. Her research at the hospital displayed the ability of a unique subset of T cells’ capability to home in on a patient’s bone marrow, restoring immune balance, and potentially halting disease progression.

Myelofibrosis has long been treated primarily with JAK (Janus Kinase) inhibitors, medications that help to block inflammatory enzymes. They work by suppressing the immune response to the blood cancer, but don’t slow the progression of the malady. And they’re not effective for every patient.

“There is a significant need for new therapeutic options for patients living with myelofibrosis who have suboptimal responses to approved JAK inhibitors,” Parmar says. “We are greatly encouraged by the safety profile and early signs of efficacy observed in this patient cohort and look forward to continuing our evaluation of the clinical potential of CK0804 in our planned expansion cohort.”

The expansion cohort is currently enrolling patients with myelofibrosis. What exactly are sufferers dealing with? Myelofibrosis is a chronic disease that causes bone marrow to form scar tissue. This makes it difficult for the body to produce normal blood cells, leaving patients with fatigue, spleen enlargement and night sweats.

Myelofibrosis is rare, with just 16,000 to 18,500 people affected in the United States. But for patients who don’t respond well to JAKs, the prognosis could mean a shorter span than the six-year median survival rate outlined for the disease by Cleveland Clinic.

Helping myelofibrosis patients to thrive isn’t the only goal for Cellenkos right now.

The company seeks to aid people with rare conditions, particularly inflammatory and autoimmune disorders, with the use of CK0804, but also other candidates including one known as CK0801. The latter drug has shown promising efficacy in aplastic anemia, including transfusion independence in treated patients.

The company closed its $15 million series A round led by BVCF Management, based in Shanghai, in 2021. Read more here.

Pioneering Houston biotech startup expands to Brazil for next phase

On the Move

Houston biotech company Cemvita has expanded into Brazil. The company officially established a new subsidiary in the country under the same name.

According to an announcement made earlier this month, the expansion aims to capitalize on Brazil’s progressive regulatory framework, including Brazil’s Fuel of the Future Law, which was enacted in 2024. The company said the expansion also aims to coincide with the 2025 COP30, the UN’s climate change conference, which will be hosted in Brazil in November.

Cemvita utilizes synthetic biology to transform carbon emissions into valuable bio-based chemicals.

“For decades Brazil has pioneered the bioeconomy, and now the time has come to create the future of the circular bioeconomy,” Moji Karimi, CEO of Cemvita, said in a news release. “Our vision is to combine the innovation Cemvita is known for with Brazil’s expertise and resources to create an ecosystem where waste becomes opportunity and sustainability drives growth. By joining forces with Brazilian partners, Cemvita aims to build on Brazil’s storied history in the bioeconomy while laying the groundwork for a circular and sustainable future.”

The Fuel of the Future Law mandates an increase in the biodiesel content of diesel fuel, starting from 15 percent in March and increasing to 20 percent by 2030. It also requires the adoption of Sustainable Aviation Fuel (SAF) and for domestic flights to reduce greenhouse gas emissions by 1 percent starting in 2027, growing to 10 percent reduction by 2037.

Cemvita agreed to a 20-year contract that specified it would supply up to 50 million gallons of SAF annually to United Airlines in 2023.

"This is all made possible by our innovative technology, which transforms carbon waste into value,” Marcio Da Silva, VP of Innovation, said in a news release. “Unlike traditional methods, it requires neither a large land footprint nor clean freshwater, ensuring minimal environmental impact. At the same time, it produces high-value green chemicals—such as sustainable oils and biofuels—without competing with the critical resources needed for food production."

In 2024, Cemvita became capable of generating 500 barrels per day of sustainable oil from carbon waste at its first commercial plant. As a result, Cemvita quadrupled output at its Houston plant. The company had originally planned to reach this milestone in 2029.

---

This story originally appeared on our sister site, EnergyCapitalHTX.