Houston-area researchers are innovating health and wellness solutions every day — even focusing on non-pandemic-related issues. Getty Images

Researchers across the world are coming up with innovative breakthroughs regarding the coronavirus, but Houston research institutions are also making health and wellness discoveries outside of COVID-19.

Here are three from Houston researchers from a muscular atrophy study from outer space to a research project that might allow blind patients to "see."

Houston Methodist's research on muscular atrophy in astronauts

Scientists are studying the effect of certain drugs to help preserve muscles in astronauts. Photo courtesy of Houston Methodist/Facebook

Houston Methodist researcher Alessandro Grattoni and his team published research on muscular atrophy in astronauts. The research was published in Advanced Therapeutics and focused on his 2017 RR-6 muscle atrophy study that was conducted on the International Space Station.

While the current standard practice for astronauts maintaining their muscles is working out over two hours a day, the research found that use of drugs could also help preserve muscles. On a SpaceX refuel mission, mice that were implanted with a "Nanofluidic Delivery System" were sent up to space and monitored, according to a report. The device gradually released small doses of formoterol, an FDA approved drug for use in bronchodilation that has also been shown to stimulate increased muscle mass.

University of Houston researcher tracking fear response to improve mental health treatment

The research could help advance wearable devices. Photo via uh.edu

University of Houston researchers are looking into the way the body responds to fear in order to enhance mental health treatment. Rose Faghih, assistant professor of electrical and computer engineering, and doctoral student Dilranjan Wickramasuriya in the Computational Medicine Lab (CML) are leading the project.

"We developed a mixed filter algorithm to continuously track a person's level of sympathetic nervous system activation using skin conductance and heart rate measurements," writes Faghih in the journal PLOS One. "This level of sympathetic activation is closely tied to what is known as emotional arousal or sympathetic arousal."

When this sympathetic nervous system is activated — sometimes known as the "fight or flight" response — the heart beats faster and more oxygen is delivered to the muscles, according to a press release. Then, the body begins to sweat in order to cool down.

"Using measurements of the variations in the conductivity of the skin and the rate at which the heart beats, and by developing mathematical models that govern these relationships, CML researchers have illustrated that the sympathetic nervous system's activation level can be tracked continuously," reports Faghih.

This algorithm could be used in a wearable electronic device that could be worn by a patient diagnosed with a fear or anxiety disorder.

Baylor College of Medicine's vision-restoring research

What if a device could see for you? Photo from Pexels

When someone loses their vision, it's likely due to damage to the eyes or optic nerve. However, the brain that interprets what they eyes sees, works perfectly fine. But researchers from Baylor College of Medicine have worked on a thesis that a device with a camera could be designed and implemented to do the seeing for the blind patient.

"When we used electrical stimulation to dynamically trace letters directly on patients' brains, they were able to 'see' the intended letter shapes and could correctly identify different letters," says Dr. Daniel Yoshor, professor and chair of neurosurgery in a press release. "They described seeing glowing spots or lines forming the letters, like skywriting."

Through a study supported by the National Eye Institute with both sighted and blind people using implanted devices, the investigators determined that the process was promising. According to the release, the researchers identified several obstacles must be overcome before this technology could be implemented in clinical practice.

"The primary visual cortex, where the electrodes were implanted, contains half a billion neurons. In this study we stimulated only a small fraction of these neurons with a handful of electrodes," says said Dr. Michael Beauchamp, professor and in neurosurgery, in the release.

"An important next step will be to work with neuroengineers to develop electrode arrays with thousands of electrodes, allowing us to stimulate more precisely. Together with new hardware, improved stimulation algorithms will help realize the dream of delivering useful visual information to blind people."

Houston researchers are commercializing their organ 3D printing technology, a local hospital has a tiny medical device with a big impact, and more in health tech. Jordan Miller/Rice University

3 health technologies developed in Houston that are changing the industry

Game changers

There's a huge opportunity for breakthrough medical technology in Houston thanks in large part to major universities, the Texas Medical Center, and other resources within health care startups.

From a new tiny implant that can deliver medicine into the patient remotely to printable human tissue, here are three health technologies coming out of Houston innovators to look out for.

Houston Methodist's tiny drug delivery implant

This tiny implant can have a big effect on patients. Courtesy of Houston Methodist

Houston Methodist nanomedicine researchers have developed an implant the size of a grape that can deliver medicine via a remote control. The device has applications in arthritis, diabetes, and heart disease treatment.

The battery-powered nanochannel deliver system uses Bluetooth technology and can dole out continuous, predetermined dosages for up to a year without refills. A proof-of-concept for the device published in Lab on a Chip.

"We see this universal drug implant as part of the future of health care innovation," says Alessandro Grattoni, chair of the nanomedicine department at Houston Methodist. "Some chronic disease drugs have the greatest benefit of delivery during overnight hours when it's inconvenient for patients to take oral medication. This device could vastly improve their disease management and prevent them from missing doses, simply with a medical professional overseeing their treatment remotely."

The devices can be programed for different dosage sizes and different release settings, which affect the voltage for the medicine delivery.

Houston Methodist has a number of new technologies it's introduced into its hospital system — click here to read about a few more.

NurseDash's resourceful scheduling tool

Houston-based NurseDash is the Uber of staffing nursing shifts in medical facilities. Photo via nursedash.com

Filling open nursing shifts has always been a challenge for hospitals and medical centers, and they've been forced to rely on outsourced companies to coordinate nurses to fill the shifts. NurseDash puts the power back in the hands of freelance nurses and the medical institutions that want to hire them.

Andy Chen, former CFO for Nobilis Health Corporation and co-founder of NurseDash, says the standard practice is hiring these agencies to fill shifts, and, while they promise to send someone, they don't even know who they'll be sending for a shift just hours away. This antiquated system prioritizes who comes in first, rather than a nurse's specialties or qualifications.

Since its debut, NurseDash, which is based in Houston's Galleria Area, has attracted 40 facilities in Houston, including hospitals, surgery centers, and senior living, and about 400 nurses. Chen says he isn't sure just what to call his technology yet, but compares it to the ride hailing of Uber or Lyft and calls it "a virtual bulletin board."

The company has already expanded beyond Houston to northeast Ohio, which the founders say has a similar competitive dynamic to the Houston market. The next goal is to hit the rest of the top 10 largest cities in the United States. To read more about the app and startup, click here.

Volumetric's human tissue-printing technology

Rice University bioengineer Daniel Sazer prepares a scale-model of a lung-mimicking air sac for testing. Jeff Fitlow/Rice University

In a world where organ transplants means an incredible amount of time, money, and patience, there might soon be another option on the operating table. Volumetric is a startup that came out of a human tissue-printing technology developed at Rice University.

Jordan Millar developed the 3D printer in his lab at Rice, and still has ongoing research within the technologies. However, Miller says he very strategically chose to launch a for-profit company in 2018 — mainly, to provide access.

"If we want to do translational research, commercialization is important," reasons Miller. "We need to build the market to get that technology into the world."

Right now, the device is printing scaled down organs, and a contraption that looks a bit like a futuristic beehive, graced the cover of the May 3 issue of the journal Science. It's a working air sac complete with blood vessels, the beginnings of a technology that is perhaps only a decade from being implanted in humans. To read more about Volumetric, click here.


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas female-founded companies raised more than $1 billion in 2024, VC data shows

by the numbers

Female-founded companies in Dallas-Fort Worth may rack up more funding deals and more money than those in Houston. However, Bayou City beats DFW in one key category — but just barely.

Data from PitchBook shows that in the past 16 years, female-founded companies in DFW collected $2.7 billion across 488 deals. By comparison, female-founded companies in the Houston area picked up $1.9 billion in VC through 343 deals.

Yet if you do a little math, you find that Houston ekes out an edge over DFW in per-deal values. During the period covered by the PitchBook data, the value of each of the DFW deals averaged $5.53 million. But at $5,54 million, Houston was just $6,572 ahead of DFW for average deal value.

Not surprisingly, the Austin area clobbered Houston and DFW.

During the period covered by the PitchBook data, female-founded companies in the Austin area hauled in $7.5 billion across 1,114 deals. The average value of an Austin deal: more than $6.7 million.

Historically, funding for female-established companies has lagged behind funding for male-established companies. In 2024, female-founded companies accounted for about one-fourth of all VC deals in the U.S., according to PitchBook.

PitchBook noted that in 2024, female-founded companies raised $38.8 billion, up 27 percent from the previous year, but deal count dropped 13.1 percent, meaning more VC for fewer startups. In Texas, female-founded companies brought in $1.3 billion last year via 151 deals. The total raised is the same as 2023, when Texas female founders got $1.3 billion in capital across 190 deals.

“The VC industry is still trying to find solid footing after its peak in 2021. While some progress was made for female founders in 2024, particularly in exit activity, female founders and investors still face an uphill climb,” says Annemarie Donegan, senior research analyst at PitchBook.

Here are 3 Houston innovators to know right now

Innovators to Know

Editor's note: These Houston innovators are making big strides in the fields of neurotechnology, neurodevelopmental diagnosis, and even improving the way we rest and recharge.

For our latest roundup of Innovators to Know, we meet a researcher who is working with teams in Houston and abroad to develop an innovative brain implant; a professor who has created an AI approach to diagnosis; and a local entrepreneur whose brand is poised for major expansion in the coming years.

Jacob Robinson, CEO of Motif Neurotech

Houston startup Motif Neurotech has been selected by the United Kingdom's Advanced Research + Invention Agency (ARIA) to participate in its inaugural Precision Neurotechnologies program. The program aims to develop advanced brain-interfacing technologies for cognitive and psychiatric conditions. Three Rice labs will collaborate with Motif Neurotech to develop Brain Mesh, which is a distributed network of minimally invasive implants that can stimulate neural circuits and stream neural data in real time. The project has been awarded approximately $5.9 million.

Motif Neurotech was spun out of the Rice lab of Jacob Robinson, a professor of electrical and computer engineering and bioengineering and CEO of Motif Neurotech.

Robinson will lead the system and network integration and encapsulation efforts for Mesh Points implants. According to Rice, these implants, about the size of a grain of rice, will track and modulate brain states and be embedded in the skull through relatively low-risk surgery. Learn more.

Dr. Ryan S. Dhindsa, Dhindsa Lab

Dr. Ryan S. Dhindsa, assistant professor of pathology and immunology at Baylor and principal investigator at the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, and his team have developed an artificial intelligence-based approach that will help doctors to identify genes tied to neurodevelopmental disorders. Their research was recently published the American Journal of Human Genetics.

Dhindsa Lab uses “human genomics, human stem cell models, and computational biology to advance precision medicine.” The diagnoses that stem from the new computational tool could include specific types of autism spectrum disorder, epilepsy and developmental delay, disorders that often don’t come with a genetic diagnosis.

“Although researchers have made major strides identifying different genes associated with neurodevelopmental disorders, many patients with these conditions still do not receive a genetic diagnosis, indicating that there are many more genes waiting to be discovered,” Dhindsa says. Learn more.

Khaliah Guillory, Founder of Nap Bar

From nap research to diversity and inclusion, this entrepreneur is making Houston workers more productiveFrom opening Nap Bar and consulting corporations on diversity and inclusion to serving the city as an LGBT adviser, Khaliah Guillory is focused on productivity. Courtesy of Khaliah Guillory

Khalia Guillory launched her white-glove, eco-friendly rest sanctuary business, Nap Bar, in Houston in 2019 to offer a unique rest experience with artificial intelligence integration for working professionals, entrepreneurs and travelers who needed a place to rest, recharge and rejuvenate.

Now she is ready to take it to the next level, with a pivot to VR and plans to expand to 30 locations in three years.

Guillory says she’s now looking to scale the business by partnering with like-minded investors with experience in the wellness space. She envisions locations at national and international airports, which she says offer ripe scenarios for patrons needing to recharge. Additionally, Guillory wants to build on her initial partnership with UT Health by going onsite to curate rest experiences for patients, caregivers, faculty, staff, nurses and doctors. Colleges also offer an opportunity for growth. Learn more.

United breaks ground on $177 million facility and opens tech center at IAH

off the ground

United Airlines announced new infrastructure investments at George Bush Intercontinental Airport as part of the company’s ongoing $3.5 billion investment into IAH.

United broke ground on a new $177 million Ground Service Equipment (GSE) Maintenance Facility this week that will open in 2027.

The 140,000-square-foot GSE facility will support over 1,800 ground service vehicles and with expansive repair space, shop space and storage capacity. The GSE facility will also be targeted for LEED Silver certification. United believes this will provide more resources to assist with charging batteries, fabricating metal and monitoring electronic controls with improved infrastructure and modern workspaces.

Additionally, the company opened its new $16 million Technical Operations Training Center.

The center will include specialized areas for United's growing fleet, and advanced simulation technology that includes scenario-based engine maintenance and inspection training. By 2032, the Training Center will accept delivery of new planes. This 91,000-square-foot facility will include sheet metal and composite training shops as well.

The Training Center will also house a $6.3 million Move Team Facility, which is designed to centralize United's Super Tug operations. United’s IAH Move Team manages over 15 Super Tugs across the airfield, which assist with moving hundreds of aircraft to support flight departures, remote parking areas, and Technical Operations Hangars.

The company says it plans to introduce more than 500 new aircraft into its fleet, and increase the total number of available seats per domestic departure by nearly 30%. United also hopes to reduce carbon emissions per seat and create more unionized jobs by 2026.

"With these new facilities, Ground Service Equipment Maintenance Facility and the Technical Operations Training Center, we are enhancing our ability to maintain a world-class fleet while empowering our employees with cutting-edge tools and training,” Phil Griffith, United's Vice President of Airport Operations, said in a news release. “This investment reflects our long-term vision for Houston as a critical hub for United's operations and our commitment to sustainability, efficiency, and growth."