Houston-area researchers are innovating health and wellness solutions every day — even focusing on non-pandemic-related issues. Getty Images

Researchers across the world are coming up with innovative breakthroughs regarding the coronavirus, but Houston research institutions are also making health and wellness discoveries outside of COVID-19.

Here are three from Houston researchers from a muscular atrophy study from outer space to a research project that might allow blind patients to "see."

Houston Methodist's research on muscular atrophy in astronauts

Scientists are studying the effect of certain drugs to help preserve muscles in astronauts. Photo courtesy of Houston Methodist/Facebook

Houston Methodist researcher Alessandro Grattoni and his team published research on muscular atrophy in astronauts. The research was published in Advanced Therapeutics and focused on his 2017 RR-6 muscle atrophy study that was conducted on the International Space Station.

While the current standard practice for astronauts maintaining their muscles is working out over two hours a day, the research found that use of drugs could also help preserve muscles. On a SpaceX refuel mission, mice that were implanted with a "Nanofluidic Delivery System" were sent up to space and monitored, according to a report. The device gradually released small doses of formoterol, an FDA approved drug for use in bronchodilation that has also been shown to stimulate increased muscle mass.

University of Houston researcher tracking fear response to improve mental health treatment

The research could help advance wearable devices. Photo via uh.edu

University of Houston researchers are looking into the way the body responds to fear in order to enhance mental health treatment. Rose Faghih, assistant professor of electrical and computer engineering, and doctoral student Dilranjan Wickramasuriya in the Computational Medicine Lab (CML) are leading the project.

"We developed a mixed filter algorithm to continuously track a person's level of sympathetic nervous system activation using skin conductance and heart rate measurements," writes Faghih in the journal PLOS One. "This level of sympathetic activation is closely tied to what is known as emotional arousal or sympathetic arousal."

When this sympathetic nervous system is activated — sometimes known as the "fight or flight" response — the heart beats faster and more oxygen is delivered to the muscles, according to a press release. Then, the body begins to sweat in order to cool down.

"Using measurements of the variations in the conductivity of the skin and the rate at which the heart beats, and by developing mathematical models that govern these relationships, CML researchers have illustrated that the sympathetic nervous system's activation level can be tracked continuously," reports Faghih.

This algorithm could be used in a wearable electronic device that could be worn by a patient diagnosed with a fear or anxiety disorder.

Baylor College of Medicine's vision-restoring research

What if a device could see for you? Photo from Pexels

When someone loses their vision, it's likely due to damage to the eyes or optic nerve. However, the brain that interprets what they eyes sees, works perfectly fine. But researchers from Baylor College of Medicine have worked on a thesis that a device with a camera could be designed and implemented to do the seeing for the blind patient.

"When we used electrical stimulation to dynamically trace letters directly on patients' brains, they were able to 'see' the intended letter shapes and could correctly identify different letters," says Dr. Daniel Yoshor, professor and chair of neurosurgery in a press release. "They described seeing glowing spots or lines forming the letters, like skywriting."

Through a study supported by the National Eye Institute with both sighted and blind people using implanted devices, the investigators determined that the process was promising. According to the release, the researchers identified several obstacles must be overcome before this technology could be implemented in clinical practice.

"The primary visual cortex, where the electrodes were implanted, contains half a billion neurons. In this study we stimulated only a small fraction of these neurons with a handful of electrodes," says said Dr. Michael Beauchamp, professor and in neurosurgery, in the release.

"An important next step will be to work with neuroengineers to develop electrode arrays with thousands of electrodes, allowing us to stimulate more precisely. Together with new hardware, improved stimulation algorithms will help realize the dream of delivering useful visual information to blind people."

Houston researchers are commercializing their organ 3D printing technology, a local hospital has a tiny medical device with a big impact, and more in health tech. Jordan Miller/Rice University

3 health technologies developed in Houston that are changing the industry

Game changers

There's a huge opportunity for breakthrough medical technology in Houston thanks in large part to major universities, the Texas Medical Center, and other resources within health care startups.

From a new tiny implant that can deliver medicine into the patient remotely to printable human tissue, here are three health technologies coming out of Houston innovators to look out for.

Houston Methodist's tiny drug delivery implant

This tiny implant can have a big effect on patients. Courtesy of Houston Methodist

Houston Methodist nanomedicine researchers have developed an implant the size of a grape that can deliver medicine via a remote control. The device has applications in arthritis, diabetes, and heart disease treatment.

The battery-powered nanochannel deliver system uses Bluetooth technology and can dole out continuous, predetermined dosages for up to a year without refills. A proof-of-concept for the device published in Lab on a Chip.

"We see this universal drug implant as part of the future of health care innovation," says Alessandro Grattoni, chair of the nanomedicine department at Houston Methodist. "Some chronic disease drugs have the greatest benefit of delivery during overnight hours when it's inconvenient for patients to take oral medication. This device could vastly improve their disease management and prevent them from missing doses, simply with a medical professional overseeing their treatment remotely."

The devices can be programed for different dosage sizes and different release settings, which affect the voltage for the medicine delivery.

Houston Methodist has a number of new technologies it's introduced into its hospital system — click here to read about a few more.

NurseDash's resourceful scheduling tool

Houston-based NurseDash is the Uber of staffing nursing shifts in medical facilities. Photo via nursedash.com

Filling open nursing shifts has always been a challenge for hospitals and medical centers, and they've been forced to rely on outsourced companies to coordinate nurses to fill the shifts. NurseDash puts the power back in the hands of freelance nurses and the medical institutions that want to hire them.

Andy Chen, former CFO for Nobilis Health Corporation and co-founder of NurseDash, says the standard practice is hiring these agencies to fill shifts, and, while they promise to send someone, they don't even know who they'll be sending for a shift just hours away. This antiquated system prioritizes who comes in first, rather than a nurse's specialties or qualifications.

Since its debut, NurseDash, which is based in Houston's Galleria Area, has attracted 40 facilities in Houston, including hospitals, surgery centers, and senior living, and about 400 nurses. Chen says he isn't sure just what to call his technology yet, but compares it to the ride hailing of Uber or Lyft and calls it "a virtual bulletin board."

The company has already expanded beyond Houston to northeast Ohio, which the founders say has a similar competitive dynamic to the Houston market. The next goal is to hit the rest of the top 10 largest cities in the United States. To read more about the app and startup, click here.

Volumetric's human tissue-printing technology

Rice University bioengineer Daniel Sazer prepares a scale-model of a lung-mimicking air sac for testing. Jeff Fitlow/Rice University

In a world where organ transplants means an incredible amount of time, money, and patience, there might soon be another option on the operating table. Volumetric is a startup that came out of a human tissue-printing technology developed at Rice University.

Jordan Millar developed the 3D printer in his lab at Rice, and still has ongoing research within the technologies. However, Miller says he very strategically chose to launch a for-profit company in 2018 — mainly, to provide access.

"If we want to do translational research, commercialization is important," reasons Miller. "We need to build the market to get that technology into the world."

Right now, the device is printing scaled down organs, and a contraption that looks a bit like a futuristic beehive, graced the cover of the May 3 issue of the journal Science. It's a working air sac complete with blood vessels, the beginnings of a technology that is perhaps only a decade from being implanted in humans. To read more about Volumetric, click here.


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston autonomous trucking co. completes first test run without human intervention

on the road

Houston-based Bot Auto, an autonomous trucking company, has completed its first test run without human assistance. Bot Auto conducted the test in Houston.

“The truck operated seamlessly within its defined operational domain with no one in the cab or remote assistance, navigating real-world traffic conditions,” the company said in a news release. “The run was executed at sunset, successfully navigating day and night operations.”

Bot Auto, a transportation-as-a-service startup, added that this milestone “serves as a validation benchmark, demonstrating the maturity and safety of Bot Auto’s autonomy stack and test protocols.”

The successful test comes two years after Xiaodi Hou, a globally recognized expert in autonomous vehicles, founded Bot Auto.

“This validation run is a meaningful step, but it’s a waypoint, not the destination,” Hou, CEO of Bot Auto, added in the release. “Success is simple: Autonomy must beat human cost-per-mile, consistently and safely. And at Bot Auto, humanless means no human — not in the driver’s seat, not in the back seat, and not behind a remote joystick.”

For several months, Bot Auto has been conducting autonomous trucking tests on a Houston-to-San Antonio route. In the coming months, Bot Auto will operate its first commercial cargo run without human assistance between its Houston and San Antonio hubs.

“Our mission is to revolutionize the transportation industry with our autonomous trucks, making a lasting positive impact on humanity,” the company says.

Last October, Bot Auto announced it had raised $20 million in pre-series A funding from Brightway Future Capital, Cherubic Ventures, EnvisionX Capital, First Star Ventures, Linear Capital, M31 Capital, Taihill Venture, Uphonest Capital, and Welight Capital.

This summer, Hou told the Front Lines podcast that Bot Auto had raised more than $45 million altogether.

Hobby debuts solar canopy as airport system reaches new sustainability milestone

solar solutions

Houston's William P. Hobby Airport is generating its own clean energy.

Houston Aiports announced that Hobby's red garage is now home to a "solar canopy" that is producing energy at 100 percent capacity to power daily operations. The photovoltaic (PV) solar system generated more than 1.1 gigawatt-hours of electricity in testing, and is expected to produce up to 1 megawatt-hour now that it's operating at full power.

“This project is proof that sustainability can be practical, visible and directly tied to the passenger experience,” Jim Szczesniak, director of aviation for Houston Airports, said in a news release. “Passengers now park under a structure that shields their cars from the Texas sun while generating clean energy that keeps airport operations running efficiently, lowering overall peak demand electrical costs during the day and our carbon footprint. It’s a win for travelers, the city and the planet.”

The project was completed by Texas A&M Engineering Experiment Station (TEES) and CenterPoint Energy. It's part of Houston Airport's efforts to reduce carbon emissions by 40 percent over its 2019 baseline.

In a separate announcement, the airport system also shared that it recently reached Level 3 in the Airports Council International (ACI) Airport Carbon Accreditation program after reducing emissions by 19 percent in three years. This includes reductions at George Bush Intercontinental Airport (IAH), Hobby and Ellington Airport/Houston Spaceport.

The reductions have come from initiatives such as adding electric vehicles to airport fleets, upgrading airfield lighting with LED bulbs, adding smarter power systems to terminals, and improving IAH's central utility plant with more efficient equipment. Additionally, the expansion to Hobby's West Concourse and renovations at IAH Terminal B incorporate cleaner equipment and technology.

According to Houston Airports, from 2019 to 2023:

  • IAH reduced emissions by 17 percent
  • Hobby reduced emissions by 32 percent
  • Ellington Airport reduced emissions by 4 percent

"I see firsthand how vital it is to link infrastructure with sustainability,” Houston City Council Member Twila Carter, chair of the council’s Resilience Committee, said in the release. “Reducing carbon emissions at our airports isn’t just about cleaner travel — it’s about smarter planning, safer communities and building a Houston that can thrive for generations to come.”

Houston health orgs lost $58M in canceled, stalled NIH grants, new report shows

research cuts

Seven institutions in the Houston area have lost nearly $60 million in grants from the National Institutes of Health (NIH) that were aimed at funding health research.

The Science & Community Impacts Mapping Project identified 37 cancelled or frozen NIH grants worth $58.7 million that were awarded to seven Houston-area institutions. The University of Texas Medical Branch at Galveston suffered the biggest loss — five grants totaling nearly $44.8 million.

The Harvard University T.H. Chan School of Public Health reported in May that over the previous several months across the U.S., the federal government had terminated roughly 2,100 NIH research grants worth around $9.5 billion.

In August, the U.S. Supreme Court derailed researchers’ efforts to reinstate almost $2 billion in research grants issued by NIH, according to Nature.com.

“Make no mistake: This was a decision critical to the future of the nation, and the Supreme Court made the wrong choice. History will look upon these mass National Institutes of Health (NIH) research grant terminations with shame,” the American Association of Medical Colleges said in a statement. “The Court has turned a blind eye to this grievous attack on science and medicine, and we call upon Congress to take action to restore the rule of law at NIH.”

Texas health researchers rely heavily on NIH grants and contracts. During the federal government’s 2024 budget year, NIH awarded $1.9 billion in grants and contracts that directly supported 30,553 jobs and more than $6.1 billion in economic activity in Texas, according to the United for Medical Research coalition.

Here’s a rundown of the cancelled and frozen NIH grants in the Houston area.

  • University of Texas Medical Branch at Galveston: Five cancelled or frozen grants, totalling approximately $44.8 million in funding lost.
  • Baylor College of Medicine: 17 grants cancelled or frozen, totalling approximately $8 million in funding lost
  • University of Houston. Five cancelled or frozen grants, totalling approximately $3.7 million in funding lost
  • University of Texas Health Science Center Houston: Five grants cancelled or frozen, totaling approximately $1.1 million in funding lost.
  • University of Texas MD Anderson Cancer Center: Two grants cancelled or frozen, totalling $831,581 in funding
  • Rice University. Two grants cancelled or frozen, totaling $254,645 in funding lost
  • Prairie View A&M University: One grant cancelled or frozen, totalling $31,771 in funding lost