Houston-area researchers are innovating health and wellness solutions every day — even focusing on non-pandemic-related issues. Getty Images

Researchers across the world are coming up with innovative breakthroughs regarding the coronavirus, but Houston research institutions are also making health and wellness discoveries outside of COVID-19.

Here are three from Houston researchers from a muscular atrophy study from outer space to a research project that might allow blind patients to "see."

Houston Methodist's research on muscular atrophy in astronauts

Scientists are studying the effect of certain drugs to help preserve muscles in astronauts. Photo courtesy of Houston Methodist/Facebook

Houston Methodist researcher Alessandro Grattoni and his team published research on muscular atrophy in astronauts. The research was published in Advanced Therapeutics and focused on his 2017 RR-6 muscle atrophy study that was conducted on the International Space Station.

While the current standard practice for astronauts maintaining their muscles is working out over two hours a day, the research found that use of drugs could also help preserve muscles. On a SpaceX refuel mission, mice that were implanted with a "Nanofluidic Delivery System" were sent up to space and monitored, according to a report. The device gradually released small doses of formoterol, an FDA approved drug for use in bronchodilation that has also been shown to stimulate increased muscle mass.

University of Houston researcher tracking fear response to improve mental health treatment

The research could help advance wearable devices. Photo via uh.edu

University of Houston researchers are looking into the way the body responds to fear in order to enhance mental health treatment. Rose Faghih, assistant professor of electrical and computer engineering, and doctoral student Dilranjan Wickramasuriya in the Computational Medicine Lab (CML) are leading the project.

"We developed a mixed filter algorithm to continuously track a person's level of sympathetic nervous system activation using skin conductance and heart rate measurements," writes Faghih in the journal PLOS One. "This level of sympathetic activation is closely tied to what is known as emotional arousal or sympathetic arousal."

When this sympathetic nervous system is activated — sometimes known as the "fight or flight" response — the heart beats faster and more oxygen is delivered to the muscles, according to a press release. Then, the body begins to sweat in order to cool down.

"Using measurements of the variations in the conductivity of the skin and the rate at which the heart beats, and by developing mathematical models that govern these relationships, CML researchers have illustrated that the sympathetic nervous system's activation level can be tracked continuously," reports Faghih.

This algorithm could be used in a wearable electronic device that could be worn by a patient diagnosed with a fear or anxiety disorder.

Baylor College of Medicine's vision-restoring research

What if a device could see for you? Photo from Pexels

When someone loses their vision, it's likely due to damage to the eyes or optic nerve. However, the brain that interprets what they eyes sees, works perfectly fine. But researchers from Baylor College of Medicine have worked on a thesis that a device with a camera could be designed and implemented to do the seeing for the blind patient.

"When we used electrical stimulation to dynamically trace letters directly on patients' brains, they were able to 'see' the intended letter shapes and could correctly identify different letters," says Dr. Daniel Yoshor, professor and chair of neurosurgery in a press release. "They described seeing glowing spots or lines forming the letters, like skywriting."

Through a study supported by the National Eye Institute with both sighted and blind people using implanted devices, the investigators determined that the process was promising. According to the release, the researchers identified several obstacles must be overcome before this technology could be implemented in clinical practice.

"The primary visual cortex, where the electrodes were implanted, contains half a billion neurons. In this study we stimulated only a small fraction of these neurons with a handful of electrodes," says said Dr. Michael Beauchamp, professor and in neurosurgery, in the release.

"An important next step will be to work with neuroengineers to develop electrode arrays with thousands of electrodes, allowing us to stimulate more precisely. Together with new hardware, improved stimulation algorithms will help realize the dream of delivering useful visual information to blind people."

Houston researchers are commercializing their organ 3D printing technology, a local hospital has a tiny medical device with a big impact, and more in health tech. Jordan Miller/Rice University

3 health technologies developed in Houston that are changing the industry

Game changers

There's a huge opportunity for breakthrough medical technology in Houston thanks in large part to major universities, the Texas Medical Center, and other resources within health care startups.

From a new tiny implant that can deliver medicine into the patient remotely to printable human tissue, here are three health technologies coming out of Houston innovators to look out for.

Houston Methodist's tiny drug delivery implant

This tiny implant can have a big effect on patients. Courtesy of Houston Methodist

Houston Methodist nanomedicine researchers have developed an implant the size of a grape that can deliver medicine via a remote control. The device has applications in arthritis, diabetes, and heart disease treatment.

The battery-powered nanochannel deliver system uses Bluetooth technology and can dole out continuous, predetermined dosages for up to a year without refills. A proof-of-concept for the device published in Lab on a Chip.

"We see this universal drug implant as part of the future of health care innovation," says Alessandro Grattoni, chair of the nanomedicine department at Houston Methodist. "Some chronic disease drugs have the greatest benefit of delivery during overnight hours when it's inconvenient for patients to take oral medication. This device could vastly improve their disease management and prevent them from missing doses, simply with a medical professional overseeing their treatment remotely."

The devices can be programed for different dosage sizes and different release settings, which affect the voltage for the medicine delivery.

Houston Methodist has a number of new technologies it's introduced into its hospital system — click here to read about a few more.

NurseDash's resourceful scheduling tool

Houston-based NurseDash is the Uber of staffing nursing shifts in medical facilities. Photo via nursedash.com

Filling open nursing shifts has always been a challenge for hospitals and medical centers, and they've been forced to rely on outsourced companies to coordinate nurses to fill the shifts. NurseDash puts the power back in the hands of freelance nurses and the medical institutions that want to hire them.

Andy Chen, former CFO for Nobilis Health Corporation and co-founder of NurseDash, says the standard practice is hiring these agencies to fill shifts, and, while they promise to send someone, they don't even know who they'll be sending for a shift just hours away. This antiquated system prioritizes who comes in first, rather than a nurse's specialties or qualifications.

Since its debut, NurseDash, which is based in Houston's Galleria Area, has attracted 40 facilities in Houston, including hospitals, surgery centers, and senior living, and about 400 nurses. Chen says he isn't sure just what to call his technology yet, but compares it to the ride hailing of Uber or Lyft and calls it "a virtual bulletin board."

The company has already expanded beyond Houston to northeast Ohio, which the founders say has a similar competitive dynamic to the Houston market. The next goal is to hit the rest of the top 10 largest cities in the United States. To read more about the app and startup, click here.

Volumetric's human tissue-printing technology

Rice University bioengineer Daniel Sazer prepares a scale-model of a lung-mimicking air sac for testing. Jeff Fitlow/Rice University

In a world where organ transplants means an incredible amount of time, money, and patience, there might soon be another option on the operating table. Volumetric is a startup that came out of a human tissue-printing technology developed at Rice University.

Jordan Millar developed the 3D printer in his lab at Rice, and still has ongoing research within the technologies. However, Miller says he very strategically chose to launch a for-profit company in 2018 — mainly, to provide access.

"If we want to do translational research, commercialization is important," reasons Miller. "We need to build the market to get that technology into the world."

Right now, the device is printing scaled down organs, and a contraption that looks a bit like a futuristic beehive, graced the cover of the May 3 issue of the journal Science. It's a working air sac complete with blood vessels, the beginnings of a technology that is perhaps only a decade from being implanted in humans. To read more about Volumetric, click here.


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston professor awarded $2.6M grant for retina, neurological research

seeing green

University of Houston College of Optometry Professor John O’Brien has received a $2.6 million grant from the National Eye Institute to continue his research on the retina and neurological functions.

O’Brien is considered a leading expert in retinal neuroscience with more than 20 years of research in the field. The new funding will allow O’Brien and his team to continue to study the dense assembly of proteins associated with electrical synapses, or gap junctions, in the retina.

Gap junctions transfer electrical signals between neurons. And the plasticity of gap junctions changes the strength of a synapse, in turn changing how visual information is processed. Previous research has shown that reduced functions of electrical synapses could be linked to autism, while their hyperfunction may lead to seizures.

“The research we propose will significantly advance our understanding of the molecular complexes that control the function of electrical synapses,” O’Brien said in a news release.

The team at UH will work to identify the proteins and examine how they impact electrical synapses. It is particularly interested in the Connexin 36, or Cx36, protein. According to O’Brien, phosphorylation of Cx36, a short-term chemical modification of the protein, serves as a key driver of plasticity. And the protein has been linked to refractive error development, which is one of the largest vision problems in the world today.

Additionally, OBrien’s research has shown that plasticity is essential for all-day vision, allowing the retina to adjust sensitivity and sharpen images. He has also built a catalog of the core set of proteins surrounding electrical synapses that are conserved across species. His research has been funded by the NEI since 2000.

5 minority-founded Houston startups shine as Innovation Awards finalists

Meet the Finalists

Houston is one of the most diverse cities in the nation, and that trend carries over into its innovation and startup ecosystem.

As part of the 2025 Houston Innovation Awards, our Minority-founded Businesses category will honor an innovative Houston startup founded or co-founded by BIPOC or LGBTQ+ representation.

Five minority-founded businesses have been named finalists for the 2025 award. The finalists, selected by our esteemed panel of judges, range from a wearable health tech device company to a clean chemical manufacturing business to a startup with a lunar mission.

Read more about these innovative businesses, their initiatives, and their inspirational founders below. Then join us at the Houston Innovation Awards on Nov. 13 at Greentown Labs, when the winner will be unveiled at our live awards ceremony.

Tickets are on now for this exclusive event celebrating all things Houston Innovation.

Capwell Services

Houston-based methane capture company Capwell Services works to eliminate vented oil and gas emissions economically for operators. According to the company, methane emissions are vented from most oil and gas facilities due to safety protocols, and operators are not able to capture the gas cost-effectively, leading operators to emit more than 14 million metric tons of methane per year in the US and Canada, equivalent to more than 400 million metric tons of CO2e per year. Founded in 2022, Capwell specializes in low and intermittent flow vents for methane capture.

The company began as a University of Pennsylvania senior design project led by current CEO Andrew Lane. It has since participated in programs with Greentown Labs and Rice Clean Energy Accelerator. The company moved to Houston in 2023 and raised a pre-seed round. It has also received federal funding from the DOE. Capwell is currently piloting its commercial unit with oil and gas operators.

Deep Anchor Solutions

Offshore energy consulting and design company Deep Anchor Solutions aims to help expedite the adoption of floating offshore energy infrastructure with its deeply embedded ring anchor (DERA) technology. According to the company, its patented DERA system can be installed quietly without heavy-lift vessels, reducing anchor-related costs by up to 75 percent and lifecycle CO2 emissions by up to 80 percent.

The company was founded in 2023 by current CEO Junho Lee and CTO Charles Aubeny. Lee earned his Ph.D. in geotechnical engineering from Texas A&M University, where Aubeny is a professor of civil and environmental engineering. The company has not raised VC funding, but has participated in numerous accelerators and incubators, including Greentown Labs, MassChallenge, EnergyTechNexus LiftOff and others. Lee is an Activate 2025 fellow.

Mars Materials

Clean chemical manufacturing business Mars Materials is working to convert captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. The company develops and produces its drop-in chemical products in Houston and uses an in-licensed process for the National Renewable Energy Lab to produce acrylonitrile, which is used to produce plastics, synthetic fibers and rubbers. The company reports that it plans to open its first commercial plant in the next 18 months.

Founded in 2019 by CEO Aaron Fitzgerald, CTO Kristian Gubsch and lead engineer Trey Sheridan, the company has raised just under $1 million in capital and is backed by Bill Gates’ Breakthrough Energy, Shell, Black & Veatch and other organizations.

Torres Orbital Mining (TOM)

Space tech company Torres Orbital Mining aims to pioneer the sustainable extraction and processing of lunar regolith and designs and builds robotic systems for excavating, classifying, and delivering lunar material. The company aims to accelerate a permanent and ethical human presence on the Moon.

The company was founded this year by Luis Torres, a current MBA candidate at Rice Business.

Wellysis USA Inc.

Wellysis USA Inc. works to detect heart rhythm disorders with its continuous ECG/EKG monitor with AI reporting. Its S-Patch cardiac monitor is designed for extended testing periods of up to 14 days on a single battery charge. The device weighs only 9 grams, is waterproof and designed to be comfortable to wear, and is considered to have a high detection rate for arrhythmias. It is ideally suited for patient-centric clinical trials to help physicians make diagnoses faster, cheaper and more conveniently.

It was established in Houston in 2023 and participated in the JLABS SFF Program the same year. It closed a $12 million series B last year. It was founded by CEO Young Juhn, CTO Rick Kim, CFO JungSoo Kim and chief strategy officer JoongWoo Kim.

---

The Houston Innovation Awards program is sponsored by Houston Community College, Houston Powder Coaters, FLIGHT by Yuengling, and more to be announced soon. For sponsorship opportunities, please contact sales@innovationmap.com.

The Ion taps John Reale for startup and investor role

new hire

The Ion has named John "JR" Reale as its director for startups and investor engagement.

In his new role, Reale, a longtime leader in Houston’s startup ecosystem, will work to strengthen the innovation district's founder and investor network.

"Here’s what I’ve come to believe: the Ion is not just a building, not just a real estate play, and not just another innovation district. COVID, remote work, and shifting market dynamics changed the rules. Key ingredients like co-working, events, and community, while impactful, are no longer enough on their own," Reale shared on a LinkedIn post announcing the move. "What’s needed are advantages ... We need to intentionally design a system that repeatedly delivers advantages so founders can pull forward their visions."

Reale previously served as executive in residence and venture partner at TMC Venture Fund and co-founded Station Houston. He also serves as managing director of Integr8d Capital. He's an investor and serves on the board of directors for a number of venture-backed companies, including Cart.com, Lionguard and others.

The Ion will host "Today Is Day One – A conversation with John (JR) Reale" to welcome Reale to the role on Tuesday, Oct. 21. Reale will be joined at the event by Heath Butler, partner at Mercury, to discuss their thoughts on shaping Houston's founders ecosystem, as well as the Ion’s Founder Advantage Platform.

"On top of this connected architecture, we will build product. That product will be the Founder Advantage Platform to remove friction, compress time, and compound outcomes," Reale continued on LinkedIn. "This is the system that will drive repeatable experiences, and naturally, make these journeys so much more fun."