Aatonomy sees autonomous vehicles as inefficient and unsafe. That's why the Houston startup is doing something differently. Sean Pavone/Getty Images

When there isn't a global pandemic, nearly 7 million people drive around Houston, and an estimated 77,000 people commute for more than an hour and a half to work. Drivers spend $1,376 and waste 31 gallons of fuel a year — to sit in traffic for what adds up to 75 hours each year.

When Wilson Pulling moved to the city two summers ago, he set out to fix all that traffic-sitting using autonomously driven cars, but not the high-priced ones that Uber and Tesla have designed. These are your regular, three- or four-year-old Honda Civics and Kia Sorentos — the cars you already own.

In 2016, Pulling founded had Aatonomy with his partner, Yang Hu, based on their thesis work from Cornell's Computer Science program. Moving the company south after two years operating out of San Francisco, they aimed not to build the self-driving car of the future, but to make the cars that Houstonians are wading through congested freeways in today drive themselves.

"Everyone doesn't get to buy a Tesla. They're driving their Corollas," Pulling says. "The way autonomy is going right now, that person is never going to benefit. We are the only way."

The company's technology attaches a wireless receiver to the car, which has to be from at least 2016 to work with them. Then, Aatonomy places sensors all along the roads and streetlights. The sensors and receiver communicate with each other, and enable autonomous driving.

Imagine, Pulling says, a 30-mile of I-45 with Aatonomy's sensors. You'd roar up the freeway, handling the controls. Then, the car's computer, under guidance from Aatonomy's network of sensors, would take over. You'd sit back, the car will navigate the traffic along with the other cars — and if all the cars are autonomous, Pulling says, the algorithm could slash congestion. When your car exits the freeway, you'd take back control.

That stretch of freeway would cost $26 million for 200,000 commuters across Houston, Pulling says, but other self-driving cars cost around $250,000 per vehicle — summing up to $50 billion for those same commuters. And Pulling says the Aatonomy system is a safer bet than the way Uber's autonomous driving. Uber's car once killed a pedestrian because, somehow, the company didn't program it to avoid people jaywalking. But because Aatonomy will manage sensors all over the street, the company will be able to monitor potential accidents more quickly than an Uber car would.

"This is a really radically different approach to a technology that, frankly, a lot of people have lost a lot of faith in," Pulling says.

Aatonomy's approach requires a smart city commitment — but the city of Houston is already buying in. First, Aatonomy, a member of the Ion Smart and Resilient Cities accelerator's inaugural cohort, got a short-term project with Aatonomy and Verizon to mount intersection cameras for studying how to prevent collisions with pedestrians on the Northside.

Additionally, the city has also greenlit a two-year pilot with Aatonomy to automate a bus route in downtown Houston. The aim, Pulling says, is making a "proof-of-concept" before rolling out sensors across I-45 — but it's also to use Houston as proof that autonomous driving can be achieved, but from a different angle than Uber.

"Self driving cars don't work. That's our thesis," Pulling says. "That's why we're building self-driving cities."

The Ion Smart Cities Accelerator program's inaugural cohort is moving into its next phase, and some participating startups earned some cash along the way. Courtesy of Station Houston

Startups take home cash prizes at inaugural Houston accelerator demo day

ion smart cities

The Ion Smart Cities Accelerator wrapped up the first phase of its inaugural program with a demo day this week as the startups move onto the pilot phase.

Over the past three months, the 10 selected startups have been working with mentors and the Station Houston resources to hone their companies within the program's new dedicated space, which includes a prototyping lab. At the demo day, which represents the conclusion of the first part of the Intel- and Microsoft-backed program, the startups presented their companies, what they've accomplished, and where they are headed.

Two companies received $5,000 checks from sponsors. GoKid, a carpooling optimization tool, received a prize from Brex, a credit card for startups. The other big winner was Aatonomy, a self-driving communities technology, which was awarded by Gulf States Toyota.

Ion Accelerator Demo Day F. Carter Smith

The second leg of the journey begins in January with pilot programs for the next six months. According to Christine Galib, director of Ion Smart Cities Accelerator, the companies have 15 pilots in the Houston area that hope to positively affect the lives of Houstonians.

"Our startups' technology focuses on connecting people. And this is what makes Houston truly the smartest city in America," says Galib. "To truly be the smartest city in America, we must continue to focus on how we connect people, and why we connect people, as well as to provide the processes and partnerships for these connections — not only to occur by chance, but also to be sustainable."

Gabriella Rowe, executive director of The Ion, echoed the importance people had on the smart cities equation.

"The great success that this accelerator has experienced over the last three months has really been because of people," she says.

Among those people who received a special shoutout from Rowe were the program's inaugural set of mentors. Several of these mentors introduced each of the startups as they presented.

"All of you opened your calendars, your time, and your wisdom to help these startups, but also to help our city," Rowe says to the crowd, which included the program mentors. "And to express a universal desire to make Houston the best possible city it can be, accessible to all Houstonians in every way as we grow to be that innovation economy and city of the future."

The Ion Smart Cities Accelerator — named for its to-be home, The Ion — announced the 10 companies selected for the first cohort. Courtesy of Rice University

Exclusive: New Houston accelerator reveals its inaugural cohort and announces strategic partner

Smart Cities

The Ion Smart Cities Accelerator launched earlier this year with a goal of engaging startups from around the world to solve some of Houston's most prevalent challenges. Backed by Intel and Microsoft and partnered with the city of Houston and Station Houston, the program has developed a curriculum and selected its first cohort.

Ten startups from around the world — half of which from right here in Houston — were selected to be a part of the program. And narrowing down to 10 was tough for the program's judges, says Christine Galib, director of the Ion Smart Cities Accelerator.

"Selecting the participants for our first cohort was difficult, due to this amazing pool of talent — that's always the problem you want to have," she tells InnovationMap.

The program will be a 10-month process, beginning Wednesday, September 4. The accelerator's Demo Day is scheduled for December 4, and then the participants will complete a pilot program with the city from January to June, Galib says.

Based on the issues the cohort aims to solve — resilience and mobility — the program and the city of Houston decided on Near Northside as a focus for the companies.

"We focused on aligning to the needs of the city of Houston and our spotlight community, Near Northside," Galib says. "We really considered the focus areas that we have identified that were needs or challenges in the area, like aging infrastructure or health and safety."

The entrepreneurs will attend local meetings, connect with the community, and zero in on the neighborhood for solutions. This provides a more accessible avenue of integration for each of the companies' technologies and allows for the entrepreneurs to receive feedback in real time from the community.

"One of my biggest things with the accelerator is technology will be for the people, and not the other way around. We're really hoping that we can build relationships with community members in Near Northside such that they'll be able to have access to our startups and their technology in a very integrated way."

Along with this new neighborhood focus, the program also announced a partnership with the University of Houston.

"We're collaborating with the UH Technology Bridge such that professors, researchers, and startups associated with UH can have a pipeline from the world of academia and research to industry and urban planning," says Galib.

Here are 10 selected startups for the inaugural cohort.

Aatonomy

Houston-based Aatonomy has developed a device that allows for Houston drivers to instal self-driving technology in their own vehicles.

"They're basically Tesla's autopilot — but for cars we already own," Galib says.

The technology makes for safer, smarter driving around town.

AeoShape

Another homegrown company, AeoShape is in the business of compiling data and making it easier to use — from facial analysis to location-based services, the company is taking data and organizing it to more easily use it for finding solutions or strategies.

"Imagine having all the big data served up anywhere at any time in a comprehensive, visual way," Galib says.

BlocPower

Based in New York, BlocPower is connecting the dots in the consumer energy world. The startup links up with government entities, utilities contractors and more to engage IoT, machine learning, and structured finance technology to better provide clean energy in American cities.

"This is pairing the different segments in the building and infrastructure world in a way that makes sense so that they can build in an integrated way," Galib says.

GoKid

Another New York company, GoKid has a solution for carpooling. In a world so conveniently filled with ridesharing technology, busy parents still struggle to find safe rides home for their kids. The free app allows for parents to connect with one another in a way never before been optimized for school pick-up and drop-off.

"We see GoKid really working with our schools here to make ridesharing safer," Galib says. "We really like them because they were a solution for the ridesharing challenge — a lot of parents who might need carpooling services don't necessarily trust an Uber driving that they don't know."

Kriterion

Artificial intelligence company Kriterion is based in South Africa, but will soon call Houston home. The company takes AI a step further in its industry and infrastructure approach.

"We see their platform shaping three areas of Houston: waste management, power system management, and pothole detection and maintenance management," says Galib.

Sensytec

Sensytec comes out of the University of Houston and uses is technology to monitor, analyze, and quantify cement and concrete conditions.

"We thought this was pretty cool to have in our cohort because Houston is quite the concrete jungle," says Galib.

The company was also recently named a top startup in MassChallenge Texas' inaugural Houston cohort.

SlideX

Houston-based SlideX has solutions for everyone's daily struggle: Parking. The company's technology has applications for finding parking in the city — including a 3D map to help direct you — and even for paying for parking.

"They call themselves 'the next generation of intelligent parking,'" Galib says.

Umanity

San Francisco-based Umanity has created a philanthropic supply chain tool. The technology can match and map local nonprofit needs to volunteers and donations, plus provide real-time analytics.

"This is kind of the epitome of doing good and adds a very strong social enterprise and community base component to our startups," says Galib.

Wyzerr

Kentucky startup Wyzerr specializes in easy-to-use surveys.

"We think Wyzerr can provide a good feedback platform where the city of Houston, businesses, and nonprofits can easily engage with people all over the city to find out how satisfied they are with the businesses and services the city provides," Galib says.

The company's technology can be crucial for tracking KPIs and progress.

"When you're creating a Smart City, there are obviously objectives you set for what you consider to be a Smart City, but also there are ways to measure how well you're meeting those objectives," she adds.

Reality IMT

Houston-based Reality IMT is engaging the latest technology tools to digitize infrastructure.

"This really speaks to understanding our infrastructure and ways to make it safer and more efficient, and also understanding the data associated with that," says Galib.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston engineers develop breakthrough device to advance spinal cord treatment

future of health

A team of Rice University engineers has developed an implantable probe over a hundred times smaller than the width of a hair that aims to help develop better treatments for spinal cord disease and injury.

Detailed in a recent study published in Cell Reports, the probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement, according to a statement from Rice. The research was supported by the National Institutes of Health, Rice, the California-based Salk Institute for Biological Studies, and the philanthropic Mary K. Chapman Foundation based in Oklahoma.

The soft and flexible sensor was used to record neuronal activity in freely moving mice with high resolution for multiple days. Historically, tracking this level of activity has been difficult for researchers because the spinal cord and its neurons move so much during normal activity, according to the team.

“We developed a tiny sensor, spinalNET, that records the electrical activity of spinal neurons as the subject performs normal activity without any restraint,” Yu Wu, a research scientist at Rice and lead author of the study said in a statement. “Being able to extract such knowledge is a first but important step to develop cures for millions of people suffering from spinal cord diseases.”

The team says that before now the spinal cord has been considered a "black box." But the device has already helped the team uncover new findings about the body's rhythmic motor patterns, which drive walking, breathing and chewing.

Lan Luan (from left), Yu Wu, and Chong Xie are working on the breakthrough device. Photo by Jeff Fitlow/Rice University

"Some (spinal neurons) are strongly correlated with leg movement, but surprisingly, a lot of neurons have no obvious correlation with movement,” Wu said in the statement. “This indicates that the spinal circuit controlling rhythmic movement is more complicated than we thought.”

The team said they hope to explore these findings further and aim to use the technology for additional medical purposes.

“In addition to scientific insight, we believe that as the technology evolves, it has great potential as a medical device for people with spinal cord neurological disorders and injury,” Lan Luan, an associate professor of electrical and computer engineering at Rice and a corresponding author on the study, added in the statement.

Rice researchers have developed several implantable, minimally invasive devices to address health and mental health issues.

In the spring, the university announced that the United States Department of Defense had awarded a four-year, $7.8 million grant to the Texas Heart Institute and a Rice team led by co-investigator Yaxin Wang to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation.

That same month, the university shared news that Professor Jacob Robinson had published findings on minimally invasive bioelectronics for treating psychiatric conditions. The 9-millimeter device can deliver precise and programmable stimulation to the brain to help treat depression, obsessive-compulsive disorder and post-traumatic stress disorder.

Houston clean hydrogen startup to pilot tech with O&G co.

stay gold

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

------

This article originally ran on EnergyCapital.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes an e-commerce startup founder, an industrial biologist, and a cellular scientist.

Omair Tariq, co-founder and CEO of Cart.com

Omair Tariq of Cart.com joins the Houston Innovators Podcast to share his confidence in Houston as the right place to scale his unicorn. Photo via Cart.com

Houston-based Cart.com, which operates a multichannel commerce platform, has secured $105 million in debt refinancing from investment manager BlackRock.

The debt refinancing follows a recent $25 million series C extension round, bringing Cart.com’s series C total to $85 million. The scaleup’s valuation now stands at $1.2 billion, making it one of the few $1 billion-plus “unicorns” in the Houston area.

Cart.com was co-founded by CEO Omair Tariq in October 2020. Read more.

Nádia Skorupa Parachin, vice president of industrial biotechnology at Cemvita

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos. Read more.

Han Xiao, associate professor of chemistry at Rice University

The funds were awarded to Han Xiao, a chemist at Rice University.

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories. Xiao will use the five-year grant to advance his work on noncanonical amino acids.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement. Read more.