groundbreaking tech
Houston research team invents cost-saving innovation for automated drug dosing
A team of Rice University researchers has built a technology that uses a $20 blood-glucose sensor to potentially automate dosing of practically any drug.
In a paper recently published in Nature, researchers in Caroline Ajo-Franklin’s lab shared that they were able to modify the inexpensive piece of equipment to detect afimoxifene, an estrogen inhibitor that is naturally produced by a patient’s body after taking the chemotherapy drug tamoxifen.
“The dream is to have technology similar to what’s available today for monitoring and treating variations in blood glucose, and have that be true for basically any drug,” said Ajo-Franklin, a bioscientist, cancer researcher and director of the Rice Synthetic Biology Institute in a press release from Rice University. “Millions of people use blood-glucose monitors every day. If we can use that same basic technology to monitor other drugs and biomarkers, we could move away from the one-size-fits-all dosing regimes that we’re stuck with today.”
The lead author of the study was postdoctoral research associate Rong Cai. She and the team tested more than 400 modified versions of the electron-releasing proteins (what creates the current that glucose monitors detect) until they found a version that reacted with afimoxifene. Essentially, they built an afimoxifene sensor that could reliably detect the presence of the drug.
According to Ajo-Franklin, her team is currently at work testing ways to identify drugs other than afimoxifene.
In a press release, Cai said, “The glucometer is the part that’s so well-developed. While our target is different, it’s just a matter of engineering and changing the protein on the inside. On the outside, everything will still be the same. You can still do the test with a strip or on your arm.”
Better still, she went on to say that because the signal is electrical, it can be sent to a phone or computer to be read and stored.
“That’s the part, that marriage between electricity and biology, that is very attractive,” Cai said.
Rice University synthetic biologists (from right to left) Caroline Ajo-Franklin, Chiagoziem Ngwadom and Rong Cai worked with Rice engineer Rafael Verduzco (left) to create and demonstrate a method of universalizing blood-glucose detection technology as a way of rapidly and inexpensively creating sensors that can monitor the dosing of chemotherapies and other drugs in real time. Photo by Jeff Fitlow/Rice University