Xiaoyu Yang, a graduate student at Rice, is the lead author on a study published in the journal Science on smart cell design. Photo by Jeff Fitlow/ Courtesy Rice University

Bioengineers at Rice University have developed a “new construction kit” for building custom sense-and-respond circuits in human cells, representing a major breakthrough in the field of synthetic biology, which could "revolutionize" autoimmune disease and cancer therapeutics.

In a study published in the journal Science, the team focused on phosphorylation, a cellular process in the body in which a phosphate group is added to a protein, signaling a response. In multicellular organisms, phosphorylation-based signaling can involve a multistage, or a cascading-like effect. Rice’s team set out to show that each cycle in a cascade can be treated as an elementary unit, meaning that they can be reassembled in new configurations to form entirely novel pathways linking cellular inputs and outputs.

Previous research on using phosphorylation-based signaling for therapeutic purposes has focused on re-engineering pathways.

“This opens up the signaling circuit design space dramatically,” Caleb Bashor, assistant professor of bioengineering and biosciences and corresponding author on the study, said in a news release. “It turns out, phosphorylation cycles are not just interconnected but interconnectable … Our design strategy enabled us to engineer synthetic phosphorylation circuits that are not only highly tunable but that can also function in parallel with cells’ own processes without impacting their viability or growth rate.”

Bashor is the deputy director for the Rice Synthetic Biology Institute, which launched last year.

The Rice lab's sense-and-respond cellular circuit design is also innovative because phosphorylation occurs rapidly. Thus, the new circuits could potentially be programmed to respond to physiological events in minutes, compared to other methods, which take hours to activate.

Rice’s team successfully tested the circuits for sensitivity and their ability to respond to external signals, such as inflammatory issues. The researchers then used the framework to engineer a cellular circuit that can detect certain factors, control autoimmune flare-ups and reduce immunotherapy-associated toxicity.

“This work brings us a whole lot closer to being able to build ‘smart cells’ that can detect signs of disease and immediately release customizable treatments in response,” Xiaoyu Yang, a graduate student in the Systems, Synthetic and Physical Biology Ph.D. program at Rice who is the lead author on the study, said in a news release.

Ajo-Franklin, a professor of biosciences, bioengineering, chemical and biomolecular engineering and a Cancer Prevention and Research Institute of Texas Scholar, added “the Bashor lab’s work vaults us forward to a new frontier — controlling mammalian cells’ immediate response to change.”

For the eighteenth year in a row, the annual Pumps & Pipes event will showcase and explore convergence innovation and common technology themes across Houston’s three major industries. Image courtesy of Pumps & Pipes

Uniquely Houston event to convene innovation experts across aerospace, energy, and medicine

guest column

Every year, Houston's legacy industries — energy, medicine, and aerospace — come together to share innovative ideas and collaborate on future opportunities.

For the eighteenth year in a row, the annual Pumps & Pipes event will showcase and explore convergence innovation and common technology themes across Houston’s three major industries. The hosting organization, also called Pumps & Pipes, was established in 2007 in Houston and is dedicated to fostering collaboration amongst the city's three major industries.

With NASA in its backyard, the world’s largest medical center, and a reputation as the “Energy Capital of the World,” Houston is uniquely positioned to lead in cross-industry convergence innovation and is reflected in the theme of this year’s event – Blueprint Houston: Converge and Innovate.

Here's what you can expect to explore at the event, which will take place this year on December 9 at TMC Helix Park. Tickets are available online.

The state of Texas’ aerospace investments

How are the recent strategic investments in aerospace by the State of Texas transforming the space economy and driving growth in adjacent industries? What is the case for cultivating a more dynamic and vibrant aerospace R&D environment?

These are the key questions explored in the opening session of Pumps & Pipes, moderated by David Alexander (Director, Rice Space Institute). Joining the discussion are distinguished leaders Norman Garza, Jr., Executive Director of the Texas Space Commission (TSC); as well as two members of the TSC board of directors: Sarah “Sassie” Duggelby, CEO/Co-Founder of Venus Aerospace; and Kathryn Lueders, GM at Starbase, SpaceX.

This panel will spotlight Texas’ critical role in shaping the future of aerospace, with a focus on its cross-sector impact, from space exploration to innovation in energy and health care. We’ll explore how the state’s investments are fueling research and development, creating economic opportunities, and fostering a more interconnected, high-tech ecosystem for the future.

Real-world applications of robotics and synthetic biology

Explore the groundbreaking intersection of synthetic biology and robotics as they reshape industries from aerospace to energy to health care. Experts from academia and industry — Rob Ambrose of Texas A&M University, Shankar Nadarajah of ExxonMobil, Shalini Yadav of the Rice Synthetic Biology Institute, and Moji Karimi of Cemvita — will discuss the real-world applications and future possibilities of these two fields, including innovative uses of robotics and drones to monitor emissions from deep-sea oil rigs, and synthetic microbes that convert carbon dioxide into valuable chemical products.

Discover how synthetic biology and robotics are paving the way for a more sustainable, autonomous, efficient, and interconnected future.

The total artificial heart – a uniquely Houston story

Heart failure affects millions globally, yet only a small fraction of patients receive life-saving heart transplants. The Total Artificial Heart (TAH), developed by BiVACOR, offers a revolutionary solution for patients with severe heart failure who are ineligible for a transplant.

Luminary leader, Dr. Billy Cohn, will discuss the groundbreaking BiVACOR TAH, a device that fully replaces the function of the heart using a magnetically levitated rotary pump. This innovative approach is part of an FDA-approved first-in-human study, aiming to evaluate its use as a bridge-to-transplant for patients awaiting heart transplants.

Moderated by Dr. Alan Lumsden (Chair Dept. of CV Surgery at Houston Methodist Hospital), join Dr. Cohn as he shares insights, and the story-behind, this pioneering technology and its potential to reshape the future of heart failure treatment, offering new hope to thousands of patients in need.

------

Stuart Corr is the director of innovation engineering at The Bookout Center at Houston Methodist and executive director of Pumps & Pipes.

Rice University synthetic biologists created a device to demonstrate a new method that could slash the costs of creating wearable monitors for precision, automated drug dosing of chemotherapies and other drugs. Photo by Jeff Fitlow/Rice University

Houston research team invents cost-saving innovation for automated drug dosing

groundbreaking tech

A team of Rice University researchers has built a technology that uses a $20 blood-glucose sensor to potentially automate dosing of practically any drug.

In a paper recently published in Nature, researchers in Caroline Ajo-Franklin’s lab shared that they were able to modify the inexpensive piece of equipment to detect afimoxifene, an estrogen inhibitor that is naturally produced by a patient’s body after taking the chemotherapy drug tamoxifen.

“The dream is to have technology similar to what’s available today for monitoring and treating variations in blood glucose, and have that be true for basically any drug,” said Ajo-Franklin, a bioscientist, cancer researcher and director of the Rice Synthetic Biology Institute in a press release from Rice University. “Millions of people use blood-glucose monitors every day. If we can use that same basic technology to monitor other drugs and biomarkers, we could move away from the one-size-fits-all dosing regimes that we’re stuck with today.”

The lead author of the study was postdoctoral research associate Rong Cai. She and the team tested more than 400 modified versions of the electron-releasing proteins (what creates the current that glucose monitors detect) until they found a version that reacted with afimoxifene. Essentially, they built an afimoxifene sensor that could reliably detect the presence of the drug.

According to Ajo-Franklin, her team is currently at work testing ways to identify drugs other than afimoxifene.

In a press release, Cai said, “The glucometer is the part that’s so well-developed. While our target is different, it’s just a matter of engineering and changing the protein on the inside. On the outside, everything will still be the same. You can still do the test with a strip or on your arm.”

Better still, she went on to say that because the signal is electrical, it can be sent to a phone or computer to be read and stored.

“That’s the part, that marriage between electricity and biology, that is very attractive,” Cai said.

Rice University synthetic biologists (from right to left) Caroline Ajo-Franklin, Chiagoziem Ngwadom and Rong Cai worked with Rice engineer Rafael Verduzco (left) to create and demonstrate a method of universalizing blood-glucose detection technology as a way of rapidly and inexpensively creating sensors that can monitor the dosing of chemotherapies and other drugs in real time. Photo by Jeff Fitlow/Rice University

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University MBA programs rank among top 5 in prestigious annual report

top of class

Rice University’s Jones Graduate School of Business MBA programs have been ranked among the top five in the country again in The Princeton Review’s 2025 Best Business Schools rankings.

The university's MBA program in finance earned a No. 3 ranking, climbing up two spots from its 2024 ranking. Finance MBA programs at the University of Virginia's Darden Graduate School of Business and New York University's Leonard N. Stern School of Business were the only ones to outrank Rice, claiming No. 2 and No. 1 spots, respectively.

Rice's online MBA program was ranked No. 5, compared to No. 4 last year. Indiana University's Bloomington Kelley School of Business' online program claimed the top spot.

“These rankings reflect the commitment of our faculty and staff, the drive and talent of our students and the strong support of our alumni and partners,” Peter Rodriguez, dean of Rice Business, said in a news release. “They are exceptional honors but also reminders — not just of our top-tier programs and world-class faculty and students but of our broader impact on the future of business education.”

Rice also ranked at No. 6 for “greatest resources for minority students."

The Princeton Review’s 2025 business school rankings are based on data from surveys of administrators at 244 business schools as well as surveys of 22,800 students enrolled in the schools’ MBA programs during the previous three academic years.

"The schools that made our lists for 2025 share four characteristics that inform our criteria for designating them as 'best': excellent academics, robust experiential learning components, outstanding career services, and positive feedback about them from enrolled students we surveyed," Rob Franek, The Princeton Review's editor-in-chief, said in a press release. "No b-school is best overall or best for all students, but to all students considering earning an MBA, we highly recommend these b-schools and salute them for their impressive programs."

Rice's finance program has ranked in the top 10 for eight consecutive years, and its online MBA has ranked in the top five for four years.

Rice and the University of Houston also claimed top marks on the Princeton Review's entrepreneurship rankings. Rice ranks as No. 1 on the Top 50 Entrepreneurship: Grad list, and the University of Houston ranked No. 1 on Top 50 Entrepreneurship: Ugrad. Read more here.

Houston named ‘star’ metro for artificial intelligence in new report

eyes on AI

A new report declares Houston one of the country’s 28 “star” hubs for artificial intelligence.

The Houston metro area appears at No. 16 in the Brookings Institution’s ranking of metros that are AI “stars.” The metro areas earned star status based on data from three AI buckets: talent, innovation and adoption. Only two places, the San Francisco Bay Area and Silicon Valley, made Brookings’ “superstar” list.

According to Brookings, the Houston area had 11,369 job postings in 2024 that sought candidates with AI skills, 210 AI startups (based on Crunchbase data from 2014 to 2024), and 113 venture capital deals for AI startups (based on PitchBook data from 2023 to 2024).

A number of developments are boosting Houston’s AI profile, such as:

Brookings also named Texas’s three other major metros as AI stars:

  • No. 11 Austin
  • No. 13 Dallas-Fort Worth
  • No. 40 San Antonio

Brookings said star metros like Houston “are bridging the gap” between the two superstar regions and the rest of the country. In 2025, the 28 star metros made up 46 percent of the country’s metro-area employment but 54 percent of AI job postings. Across the 28 metros, the number of AI job postings soared 139 percent between 2018 and 2025, according to Brookings.

Around the country, dozens of metros fell into three other categories on Brookings’ AI list: “emerging centers” (14 metros), “focused movers” (29 metros) and “nascent adopters” (79 metros).