HOUSTON INNOVATORS PODCAST EPISODE 40

Entrepreneur hopes to bring microbiology into the future with her Houston-based, pandemic-founded startup

Rebecca Vaught started her biotech company just ahead of COVID-19, but she shares on the Houston Innovators Podcast that it's meant more opportunities than challenges. Photo courtesy of Van Heron Labs

While startups everywhere are struggling to adapt in the tumultuous times of COVID-19, Rebecca Vaught and her company, having launched just ahead of the pandemic, don't actually know any other way of existing.

After watching some of her friends thrive in Houston's life science ecosystem, she knew Houston was the place she wanted to start the company that she'd been envisioning and plotting for years. She took a chance on the city, moved in, and began Enventure's Biodesign accelerator. The program shutdown as COVID-19 spread, much like other programs, but Vaught wasn't going to let that stop her momentum.

"A lot of people probably would have seen that as the stopping point but that was actually the beginning of the company," Vaught says on the Houston Innovators Podcast. "What it allowed us to do was actually establish the lab and do the hard work."

As Vaught says, the biotech company, Van Heron Labs, is what it is thanks to the pandemic — not just in spite of it.

"While it's been challenging, the pandemic — in a lot of ways — is the only thing we've ever known and it's a lot of reason why the company has taken off and been successful," Vaught says on the show.

She runs the company with co-founder Alec Santiago and a team of 17 interns — all located across the country. Vaught herself is currently residing in Huntsville, Alabama, after struggling to find lab space in Houston. However, the relocation has been a blessing in disguise.

"Both ecosystems are extremely unique and both bring something different to the table," she says. "My next mission, through my lived experience, is igniting or uniting the Houston and Huntsville biotech ecosystems."

On the episode, Vaught explains how the two cities — each representing key parts of space exploration history and burgeoning tech scene — complement each other. She also shares her plans for growth and the need to bring microbiology into the future.

Listen to the full interview below — or wherever you get your podcasts — and subscribe for weekly episodes.


Trending News

Building Houston

 
 

Allterum Therapeutics Inc., a portfolio company of Fannin Innovation Studio, is using the funds to prepare for clinical trials. Photo via Getty Images

Allterum Therapeutics Inc. has built a healthy launchpad for clinical trials of an immunotherapy being developed to fight a rare form of pediatric cancer.

The Houston startup recently collected $1.8 million in seed funding through an investor group associated with Houston-based Fannin Innovation Studio, which focuses on commercializing biotech and medtech discoveries. Allterum has also brought aboard pediatric oncologist Dr. Philip Breitfeld as its chief medical officer. And the startup, a Fannin spinout, has received a $2.9 million grant from the Cancer Prevention Research Institute of Texas.

The funding and Breitfeld's expertise will help Allterum prepare for clinical trials of 4A10, a monoclonal antibody therapy for treatment of cancers that "express" the interleukin-7 receptor (IL7R) gene. These cancers include pediatric acute lymphoblastic leukemia (ALL) and some solid-tumor diseases. The U.S. Food and Drug Administration (FDA) has granted "orphan drug" and "rare pediatric disease" designations to Allterum's monoclonal antibody therapy.

If the phrase "monoclonal antibody therapy" sounds familiar, that's because the FDA has authorized emergency use of this therapy for treatment of COVID-19. In early January, the National Institute of Allergy and Infectious Diseases announced the start of a large-scale clinical trial to evaluate monoclonal antibody therapy for treatment of mild and moderate cases of COVID-19.

Fannin Innovation Studio holds exclusive licensing for Allterum's antibody therapy, developed at the National Cancer Institute. Aside from the cancer institute, Allterum's partners in advancing this technology include the Therapeutic Alliance for Children's Leukemia, Baylor College of Medicine, Texas Children's Hospital, Children's Oncology Group, and Leukemia & Lymphoma Society.

Although many pediatric patients with ALL respond well to standard chemotherapy, some patients continue to grapple with the disease. In particular, patients whose T-cell ALL has returned don't have effective standard therapies available to them. Similarly, patients with one type of B-cell ALL may not benefit from current therapies. Allterum's antibody therapy is designed to effectively treat those patients.

Later this year, Allterum plans to seek FDA approval to proceed with concurrent first- and second-phase clinical trials for its immunotherapy, says Dr. Atul Varadhachary, managing partner of Fannin Innovation Studio, and president and CEO of Allterum. The cash Allterum has on hand now will go toward pretrial work. That will include the manufacturing of the antibody therapy by Japan's Fujifilm Diosynth Biotechnologies, which operates a facility in College Station.

"The process of making a monoclonal antibody ready to give to patients is actually quite expensive," says Varadhachary, adding that Allterum will need to raise more money to carry out the clinical trials.

The global market for monoclonal antibody therapies is projected to exceed $350 billion by 2027, Fortune Business Insight says. The continued growth of these products "is expected to be a major driver of overall biopharmaceutical product sales," according to a review published last year in the Journal of Biomedical Science.

One benefit of these antibody therapies, delivered through IV-delivered infusions, is that they tend to cause fewer side effects than chemotherapy drugs, the American Cancer Society says.

"Monoclonal antibodies are laboratory-produced molecules engineered to serve as substitute antibodies that can restore, enhance or mimic the immune system's attack on cancer cells. They are designed to bind to antigens that are generally more numerous on the surface of cancer cells than healthy cells," the Mayo Clinic says.

Varadhachary says that unlike chemotherapy, monoclonal antibody therapy takes aim at specific targets. Therefore, monoclonal antibody therapy typically doesn't broadly harm healthy cells the way chemotherapy does.

Allterum's clinical trials initially will involve children with ALL, he says, but eventually will pivot to children and adults with other kinds of cancer. Varadhachary believes the initial trials may be the first cancer therapy trials to ever start with children.

"Our collaborators are excited about that because, more often than not, the cancer drugs for children are ones that were first developed for adults and then you extend them to children," he says. "We're quite pleased to be able to do something that's going to be important to children."

Trending News