Rebecca Vaught started her biotech company just ahead of COVID-19, but she shares on the Houston Innovators Podcast that it's meant more opportunities than challenges. Photo courtesy of Van Heron Labs

While startups everywhere are struggling to adapt in the tumultuous times of COVID-19, Rebecca Vaught and her company, having launched just ahead of the pandemic, don't actually know any other way of existing.

After watching some of her friends thrive in Houston's life science ecosystem, she knew Houston was the place she wanted to start the company that she'd been envisioning and plotting for years. She took a chance on the city, moved in, and began Enventure's Biodesign accelerator. The program shutdown as COVID-19 spread, much like other programs, but Vaught wasn't going to let that stop her momentum.

"A lot of people probably would have seen that as the stopping point but that was actually the beginning of the company," Vaught says on the Houston Innovators Podcast. "What it allowed us to do was actually establish the lab and do the hard work."

As Vaught says, the biotech company, Van Heron Labs, is what it is thanks to the pandemic — not just in spite of it.

"While it's been challenging, the pandemic — in a lot of ways — is the only thing we've ever known and it's a lot of reason why the company has taken off and been successful," Vaught says on the show.

She runs the company with co-founder Alec Santiago and a team of 17 interns — all located across the country. Vaught herself is currently residing in Huntsville, Alabama, after struggling to find lab space in Houston. However, the relocation has been a blessing in disguise.

"Both ecosystems are extremely unique and both bring something different to the table," she says. "My next mission, through my lived experience, is igniting or uniting the Houston and Huntsville biotech ecosystems."

On the episode, Vaught explains how the two cities — each representing key parts of space exploration history and burgeoning tech scene — complement each other. She also shares her plans for growth and the need to bring microbiology into the future.

Listen to the full interview below — or wherever you get your podcasts — and subscribe for weekly episodes.


Pheramor takes users' DNA and social media habits and matches them with compatible partners. Courtesy of Pheramor

Houston DNA-based dating app expands nationwide, launches next funding round

From swiping to swabbing

Houston singles can find their perfect match — even if it's someone across the country. Houston-based Pheramor — a DNA-based dating app — is available for download in every state.

Brittany Barreto, Pheramor's co-founder and CEO, has a PhD in genetics from Baylor College of Medicine. She first had the idea in a genetics seminar when she was 18 and in college, but that was almost 10 years ago, and the market wasn't ready. Now, she says singles have swipe fatigue from the existing and ineffective dating apps, and it's also relatively normal now to send your spit in the mail thanks to 23AndMe.

Pheramor users download the app and request a test kit. After a few cheek swabs, they send it back to Barreto and her team and they identify 11 immune system genes and upload the data to the user's profile. The app then compares the genes to other users to give a compatibility score.

"The science behind attraction based on your DNA is that people are attracted to one another when their immune systems are different — opposites attract is biologically true," Barreto says. "When we were cavewomen and cavemen, we didn't know who was our uncle and who was our cousin, so we used our nose to figure out who is genetically diverse compared to us. If you're genetically diverse, then you're probably not my relative, and therefore we'd have healthier children."

Pheramor also calculates a social score based on a questionnaire or a data mine of a user's social media. The overall compatibility score uses both the DNA and social compatibility scores.

The app launched in Houston in March to a great reception of local singles, but, a few months later, Barreto realized nothing was holding them back from expanding nationwide.

"We surveyed our user base and asked them if they had highly compatible numbers with someone in, say, Chicago, would they want to know," Barreto says. "And something like 89 percent said yes."

Pheramor users are usually between 28 and 38, have good paying jobs, and are seeing commitment, Barreto says. Most of them travel around a lot already.

"We opened it up on September 7, and in 30 days we saw over 50 percent growth in our user base."

The company has zeroed in on a few key metros where advertising dollars go a long way for generating user downloads; Boston, New York, San Francisco, Los Angeles, and Miami have all been great markets for Pheramor.

With the user base growing, Barreto is focused on growing her team. Pheramor's current round of funding launched November 1, and with the capital raised, she hopes to be able to make the team's CFO and chief marketing officer both full time.

Pheramor is also working on using its custom algorithm as a resource to other existing dating services worldwide as well as for couples who want to see their compatibility score with their current partners.

"A long-term goal that's coming to fruition a lot faster than I thought is Pheramor being a leader in genetic testing for romance," Barreto says.

Science of love

Karla Martin/Pheramor

Pheramor CEO and co-founder, Brittany Barreto, first thought of a DNA-based dating company when she was in undergraduate student studying biology. The idea stuck with her as she went through her genetics doctoral program at Baylor College of Medicine.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston organizations launch collaborative center to boost cancer outcomes

new to HOU

Rice University's new Synthesis X Center officially launched last month to bring together experts in cancer care and chemistry.

The center was born out of what started about seven years ago as informal meetings between Rice chemist Han Xiao's research group and others from the Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center at the Baylor College of Medicine. The level of collaboration between the two teams has grown significantly over the years, and monthly meetings now draw about 100 participants from across disciplines, fields and Houston-based organizations, according to a statement from Rice.

Researchers at the new SynthX Center will aim to turn fundamental research into clinical applications and make precision adjustments to drug properties and molecules. It will focus on improving cancer outcomes by looking at an array of factors, including prevention and detection, immunotherapies, the use of artificial intelligence to speed drug discovery and development, and several other topics.

"At Rice, we are strong on the fundamental side of research in organic chemistry, chemical biology, bioengineering and nanomaterials,” Xiao says in the statement. “Starting at the laboratory bench, we can synthesize therapeutic molecules and proteins with atom-level precision, offering immense potential for real-world applications at the bedside ... But the clinicians and fundamental researchers don’t have a lot of time to talk and to exchange ideas, so SynthX wants to serve as the bridge and help make these connections.”

SynthX plans to issue its first merit-based seed grants to teams with representatives from Baylor and Rice this month.

With this recognition from Rice, the teams from Xiao's lab and the TMC will also be able to expand and formalize their programs. They will build upon annual retreats, in which investigators can share unpublished findings, and also plan to host a national conference, the first slated for this fall titled "Synthetic Innovations Towards a Cure for Cancer.”

“I am confident that the SynthX Center will be a great resource for both students and faculty who seek to translate discoveries from fundamental chemical research into medical applications that improve people’s lives,” Thomas Killian, dean of the Wiess School of Natural Sciences, says in the release.

Rice announced that it had invested in four other research centers along with SynthX last month. The other centers include the Center for Coastal Futures and Adaptive Resilience, the Center for Environmental Studies, the Center for Latin American and Latinx Studies and the Rice Center for Nanoscale Imaging Sciences.

Earlier this year, Rice also announced its first-ever recipients of its One Small Step Grant program, funded by its Office of Innovation. The program will provide funding to faculty working on "promising projects with commercial potential," according to the website.

Houston physicist scores $15.5M grant for high-energy nuclear physics research

FUTURE OF PHYSICS

A team of Rice University physicists has been awarded a prestigious grant from the Department of Energy's Office of Nuclear Physics for their work in high-energy nuclear physics and research into a new state of matter.

The five-year $15.5 million grant will go towards Rice physics and astronomy professor Wei Li's discoveries focused on the Compact Muon Solenoid (CMS), a large, general-purpose particle physics detector built on the Large Hadron Collider (LHC) at CERN, a European organization for nuclear research in France and Switzerland. The work is "poised to revolutionize our understanding of fundamental physics," according to a statement from Rice.

Li's team will work to develop an ultra-fast silicon timing detector, known as the endcap timing layer (ETL), that will provide upgrades to the CMS detector. The ETl is expected to have a time resolution of 30 picoseconds per particle, which will allow for more precise time-of-flight particle identification.

The Rice team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas. Photo via Rice.edu

This will also help boost the performance of the High-Luminosity Large Hadron Collider (HL-LHC), which is scheduled to launch at CERN in 2029, allowing it to operate at about 10 times the luminosity than originally planned. The ETL also has applications for other colliders apart from the LHC, including the DOE’s electron-ion collider at the Brookhaven National Laboratory in Long Island, New York.

“The ETL will enable breakthrough science in the area of heavy ion collisions, allowing us to delve into the properties of a remarkable new state of matter called the quark-gluon plasma,” Li explained in a statement. “This, in turn, offers invaluable insights into the strong nuclear force that binds particles at the core of matter.”

The ETL is also expected to aid in other areas of physics, including the search for the Higgs particle and understanding the makeup of dark matter.

Li is joined on this work by co-principal investigator Frank Geurts and researchers Nicole Lewis and Mike Matveev from Rice. The team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas.

Last year, fellow Rice physicist Qimiao Si, a theoretical quantum physicist, earned the prestigious Vannevar Bush Faculty Fellowship grant. The five-year fellowship, with up to $3 million in funding, will go towards his work to establish an unconventional approach to create and control topological states of matter, which plays an important role in materials research and quantum computing.

Meanwhile, the DOE recently tapped three Houston universities to compete in its annual startup competition focused on "high-potential energy technologies,” including one team from Rice.

------

This article originally ran on EnergyCapital.