The opening of the pilot plant marks the debut of Cemvita’s eCO2 business as a wholly owned subsidiary. Photo courtesy of Cemvita

Cleantech startup Cemvita has set up a pilot plant in its hometown of Houston to develop technology for converting carbon emissions as feedstock to make products like fertilizer, plastics, methane, and fuel.

The opening of the pilot plant marks the debut of Cemvita’s eCO2 business as a wholly owned subsidiary. The term eCO2 refers to equivalent carbon dioxide, or a way to measure a combination of greenhouse gases such as carbon dioxide and methane.

With a capacity of more than 14,000 gallons, the plant is producing eCO2 oil, an alternative to soybean oil. The company already is shipping samples of eCO2 products to customers, including renewable-fuel companies and plastics manufacturers.

Cemvita says the biofuel industry is facing feedstock shortages and price fluctuations. Biofuel feedstocks produce starches or sugars that can be converted to produce ethanol, while others produce oil that can be used in biodiesel production, according to the Sustainable Agriculture Research & Education (SARE) program.

“Traditional biofuels, including renewable diesel and sustainable aviation fuel, have relied on oils derived from crops, such as soybean and corn, as well as recycled vegetable oils,” Cemvita says. “As demand grows for petroleum-free alternatives, feedstock is in short supply and must compete with food markets. Crops of soybeans, sugar, and corn use huge swaths of land, and the raw materials require extensive refining — two factors that impede the processes from being sustainable.”

By contrast, eCO2 plants like Cemvita’s can supply feedstock production with minimal land and electricity requirements, and without relying on hydrogen or sunlight, the company says. Furthermore, the output of eCO2 plants is designed to carbon-negative, not just carbon-neutral.

Cemvita’s eCO2 biomanufacturing platform uses engineered microbes that absorb and convert carbon dioxide into feedstocks and finished products.

“The energy transition requires completely new, cost-effective approaches for heavy industry,” Charlie Nelson, chief operating officer of Cemvita, says in a news release. “We built this next-generation pilot plant in response to strong demand from … partners who are actively seeking sustainable solutions to the … feedstock shortage.”

Brother-and-sister team Moji and Tara Karimi founded Cemvita in 2017.

Investors in Cemvita include Oxy Low Carbon Ventures, an investment arm of Houston-based Occidental Petroleum, as well as BHP Group, Mitsubishi, and United Airlines Ventures.

Oxy Low Carbon Ventures and United Airlines Ventures are financing Cemvita’s work on sustainable jet fuel. United Airlines operates a hub at George Bush Intercontinental Airport Houston.

San Diego-based rBIO moved to Houston to take advantage of the growing ecosystem of biomanufacturing and synthetic biology. Photo via Getty Images

California-founded biotech startup relocates to join Houston's emerging bioeconomy

new to hou

Cameron Owen had an idea for a synthetic biology application, and he pitched it to a handful of postdoctoral programs. When he received the feedback that he didn't have enough research experience, he decided to launch a startup based in San Diego around his idea. He figured that he'd either get the experience he needed to re-apply, or he'd create a viable company.

After three years of research and development, Owen's path seems to have taken him down the latter of those two options, and he moved his viable company, rBIO, to Houston — a twist he didn't see coming.

“Houston was not on my radar until about a year and a half ago,” Owen says, explaining that he thought of Houston as a leading health care hub, but the coasts still had an edge when it came to what he was doing. “San Diego and the Boston area are the two big biotech and life science hubs.”

But when he visited the Bayou City in December of 2021, he says he saw first hand that something new was happening.

“Companies from California like us and the coastal areas were converging here in Houston and creating this new type of bioeconomy,” he tells InnovationMap.

Owen moved to Houston last year, but rBIO still has an academic partner in Washington University in St. Louis and a clinical research organization it's working with too, so he admits rBIO's local footprint is relatively small — but not for long.

"When we look to want to get into manufacturing, we definitely want to build something here in Houston," he says. "We’re just not to that point as a company."

In terms of the stage rBIO is in now, Owen says the company is coming out of R&D and into clinical studies. He says rBIO has plans to fundraise and is meeting with potential partners that will help his company scale and build out a facility.

With the help of its CRO partner, rBIO has two ongoing clinical projects — with a third coming next month. Owen says right now rBIO is targeting the pharmaceutical industry’s biologics sector — these are drugs our bodies make naturally, like insulin. About 12 percent of the population in the United States has diabetes, which translates to almost 40 million people. The demand for insulin is high, and rBIO has a way to create it — and at 30 percent less cost.

This is just the tip of the iceberg — the world of synthetic biology application is endless.

“Now that we can design and manipulate biology in ways we’ve never been able to before,” Owen says, "we’re really only limited by our own imagination.”

Synthetic biology is a field of science that involves programing biology to create and redesign natural elements. While it sounds like science fiction, Owen compares it to any other type of technology.

“Biology really is a type of software,” he says. “Phones and computers at their core run on 1s and 0s. In biology, it’s kind of the same thing, but instead of two letters, it’s four — A, C, T, and G.”

“The cool thing about biology is the software builds the hardware,” he continues. “You put that code in there and the biology builds in and of itself.”

Owen says the industry of synthetic biology has been rising in popularity for years, but the technology has only recently caught up.

“We’re exploring a brave new world — there’s no doubt about that,” Owen says.

The San Jacinto College Biotechnology Center is aimed at training workers in life science and at helping firm up Houston’s status in life science manufacturing. Rending courtesy of San Jacinto College

New biotech training center to rise in Northeast Houston

coming soon

A biotech training center is in the works at San Jacinto College in Houston, which the school says is positioned to become a global leader in biomanufacturing.

The San Jacinto College Biotechnology Center, to be located at the 4,300-acre Generation Park in Northeast Houston, is aimed at training workers in life science and at helping firm up Houston’s status in life science manufacturing.

A recent study commissioned by the Greater Houston Partnership identified development of a well-trained workforce as a key component to the region’s success in attracting and retaining life science companies.

San Jac and McCord Development, the Houston-based developer of Generation Park, have signed a memorandum of understanding with the National Institute for Bioprocessing Research and Training (NIBRT) in Ireland that is supposed to lead to the college becoming the exclusive provider of institute-licensed training in the Southwest and Southeast regions of the U.S.

The college says the center “will offer students hands-on experience in a pilot-scale bioprocessing center that includes upstream, downstream, and fill-finish facilities, as well as specific curriculum in cell and gene therapy and other innovative and developing industry sectors.”

San Jacinto College will be the institute’s sixth global partner and second U.S. partner.

“Building on San Jacinto College’s established track record of working with industry to develop need-specific training and accreditation centers, the partnership with NIBRT represents an opportunity to train the workforce that Houston's biopharma industry needs to sustain its rapid growth,” Brenda Hellyer, chancellor of the college, says in a news release. “We also expect to contribute to the global market by training people eager to enter this growing industry from around the United States and beyond.”

A study will be undertaken to determine details about the center, including its curriculum and size.

“San Jacinto College’s Biotechnology Center at Generation Park is the catalyst our region needs to fill the gap in our existing life science ecosystem and accelerate biomanufacturing in Houston,” says Ryan McCord, president of McCord Development.

Houston has some much-needed new lab space in the Texas Medical Center. Photo courtesy of CUBIO

Exclusive: Houston biotech coworking spot expands with new wet lab space

ready to rent

While Houston has been recognized as an emerging hub for life sciences, access to lab space is a huge factor in that equation — and one where the city has room for improvement.

CUBIO Innovation Center, located in the heart of the Texas Medical Center, has witnessed that first hand. First opening as a larger coworking concept, CEO Wesley Okeke says it was the smaller lab space that was booked every day. CUBIO pivoted and redistributed their operations to offer more dry lab space to its tenants. Now, the organization is ready to reach the next stage by introducing a new wet lab that opens doors for biotech innovators who need specific infrastructure, equipment, and environment.

“We have all the necessary equipment for a fully functioning biotech lab,” Okeke tells InnovationMap.

"For those working with cell culture, the dry lab provides almost no resources or infrastructure for you to build it out," he continues. "A wet lab brings in the necessary equipment and environment to be successful in developing pharmaceuticals, drug delivery devices, whatever you need in the biotech space.”

The new space can support 15 early stage biotech startups. Photo courtesy of CUBIO

Most of Houston's wet lab space is housed in academic or health care institutions. Getting into those labs can be competitive and complicated, especially when it comes to intellectual property. CUBIO wanted to offer an alternative for early stage biotech teams working on a tight budget and not looking for a long-term commitment.

“When it comes to finding wet lab space, it’s almost nonexistent," Okeke says. "There are a very few out there, but there are very few considering the ecosystem of biotech research in Houston.”

Okeke says CUBIO has seen interest from out-of-town startups looking for space — and not being able to find it without building it themselves.

"We have created what we call lab offices, which could be individual labs, but we have a main area with all our equipment," he says.

And the new space has room to grow. Right now, CUBIO can support 15 companies in its space. With potential to expand on its current sixth floor and to the fifth floor as well, that could grow to a capacity of 50 companies.

Monthly rent starts at $400 for a workbench and up to $950 for a private office and a workbench in the lab. All of CUBIO's memberships options include incubation support from the team and its network of mentors and experts.

“My personal dream and vision is to help these startups in Houston get what they need — get the resources they need and the support they need to launch," Okeke says.

The CUBIO team offers incubation support for its tenant startups. Photo courtesy of CUBIO

A Houston-based biotech startup has fresh funds to continue R&D on its products. Photo via Getty Images

Houston biotech company raises $15M round led by Chinese health care investor

fresh funds

A Houston-based biotech company that was founded by a University of Texas MD Anderson Cancer Center doctor has closed a fresh round of funding.

Cellenkos closed its $15 million series A round led by BVCF Management, based in Shanghai, China. The biotech company is developing novel T regulatory (Treg) cell therapies to treat autoimmune and inflammatory disorders. Dr. Simrit Parmar of the University of Texas MD Anderson Cancer Center and Golden Meditech Holdings Limited founded the company.

Dr. Parmar's specialty is in Lymphoma Myeloma and experimental therapeutics. According to a news release, she is also the principal investigator of a research laboratory focused on umbilical cord blood-derived Treg cells including their isolation and ex-vivo expansion for generating clinically relevant doses for their application in autoimmune diseases and inflammatory disorders.

"We feel fortunate to welcome BVCF as a new investor. As I look ahead, we are committed to bringing our novel Treg cell therapies to patients in need around the world," says Dr. Parmar in a news release.

BVCF is a health care investment firm focused on growth-stage healthcare companies from around the world. The portfolio has a particular focus on innovative solutions that address unmet health needs in China.

"Cellenkos' innovative and transformative Treg cell therapy platform to address autoimmune and inflammatory disorders has the potential to significantly serve unmet patient needs. We are proud to lead the financing and support their groundbreaking efforts," says Dr. Zhi Yang, managing partner at BVCF, in the release.

The company has plans to launch a phase 1b trial of add on therapy with one of its products for the treatment of myelofibrosis patients. The fresh funds will allow the company to continue to scale and test its life-saving technology.

Cemvita Factory is working on a pilot plant with Oxy to scale its biotechnology. Photo via OxyLowCarbon.com

Oxy taps Houston startup's carbon negative biotechnology for new pilot plant

sustainability moves

Occidental's venture arm — Oxy Low Carbon Ventures — has announced its plans to construct and operate a one metric ton per month bio-ethylene pilot plant featuring Houston-based Cemvita Factory's technology that biomimics photosynthesis to convert carbon dioxide into feedstocks.

The new plant will scale the process, which was jointly developed between Cemvita and OLCV, and is expected sometime next year, according to a press release from Oxy.

"Today bio-ethylene is made from bio-ethanol, which is made from sugarcane, which in turn was created by photosynthesizing CO2. Our bio-synthetic process simply requires CO2, water and light to produce bio-ethylene, and that's why it saves a lot of cost and carbon emissions," says Moji Karimi, co-founder and CEO of Cemvita Factory, in the release. "This project is a great example of how Cemvita is applying industrial-strength synthetic biology to help our clients lower their carbon footprint while creating new revenue streams."

Oxy and Cemvita have been working together for a while, and in 2019, OLCV invested an undisclosed amount into the startup. The investment, according to the release, was made to jointly explore how these advances in synthetic biology can be used for sustainability efforts in the bio-manufacturing of OxyChem's products.

"This technology could provide an opportunity to offer a new, non-hydrocarbon-sourced ethylene product to the market, reducing carbon emissions, and in the future benefit our affiliate, OxyChem, which is a large producer and consumer of ethylene in its chlorovinyls business," says Robert Zeller, vice president of technology at OLCV, in a news release.

Moji Karimi founded the company with his sister and Cemvita CTO, Tara, in 2017. The idea was to biomimic photosynthesis to take CO2 and turn it into something else. The first iteration of the technology turned CO2 into sugar — the classic photosynthesis process. Karimi says the idea was to create this process for space, so that astronauts can turn the CO2 they breathe out into a calorie source.

"Nature provided the inspiration," noted Dr. Tara Karimi, co-founder and CTO of Cemvita Factory. "We took a gene from a banana and genetically engineered it into our CO2-utilizing host microorganism. We are now significantly increasing its productivity with the goal to achieve commercial metrics that we have defined alongside OLCV."

A couple weeks ago, Moji Karimi joined the Houston Innovators Podcast to discuss growth and challenges Cemvita Factory faced.

"We're defining this new category for application of synthetic biology in heavy industries for decarbonization," he shares on the show. Stream the episode below.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston health care institution secures $100M for expansion, shares renderings

fresh funding

Baylor College of Medicine has collected $100 million toward its $150 million fundraising goal for the college’s planned Lillie and Roy Cullen Tower.

The $100 million in gifts include:

  • A total of $30 million from The Cullen Foundation, The Cullen Trust for Health Care, and The Cullen Trust for Higher Education.
  • $12 million from the DeBakey Medical Foundation
  • $10 million from the Huffington Foundation
  • More than $45 million from members of Baylor’s Board of Trustees and other community donors, including the M.D. Anderson Foundation, the Albert and Margaret Alkek Foundation, and The Elkins Foundation.

“The Cullen Trust for Health Care is very honored to support this building along with The Cullen Foundation and The Cullen Trust for Higher Education,” Cullen Geiselman Muse, chair of The Cullen Trust for Health Care, says in a news release. “We cannot wait to see what new beginnings will come from inside the Lillie and Roy Cullen Tower.”

The Baylor campus is next to Texas Medical Center’s Helix Park, a 37-acre project. Rendering courtesy of BCM

The Lillie and Roy Cullen Tower is set to open in 2026. The 503,000-square-foot tower is the first phase of Baylor’s planned Health Sciences Park, an 800,000-square-foot project that will feature medical education and research adjacent to patient care at Baylor Medicine and Baylor St. Luke’s Medical Center on the McNair Campus.

The Baylor campus is next to Texas Medical Center’s Helix Park, a 37-acre project that will support healthcare, life sciences, and business ventures. Baylor is the anchor tenant in the first building being constructed at Helix Park.

“To really change the future of health, we need a space that facilitates the future,” says Dr. Paul Klotman, president, CEO, and executive dean of Baylor. “We need to have a great building to recruit great talent. Having a place where our clinical programs are located, where our data scientists are, next to a biotech development center, and having our medical students all integrated into that environment will allow them to be ready in the future for where healthcare is going.”

In the 1940s, Lillie and Roy Cullen and the M.D. Anderson Foundation were instrumental in establishing the Texas Medical Center, which is now the world’s largest medical complex.

“Baylor is the place it is today because of philanthropy,” Klotman says. “The Cullen family, the M.D. Anderson Foundation, and the Albert and Margaret Alkek Foundation have been some of Baylor’s most devoted champions, which has enabled Baylor to mold generations of exceptional health sciences professionals. It is fitting that history is repeating itself with support for this state-of-the-art education building.”

The Cullen Foundation donated $30 million to the project. Rendering courtesy of BCM

Texas angel investor group expands to make impact in Houston

angels flying in

An angel investment network founded in Austin has announced its entrance into the Houston market.

SWAN Impact Network, which focuses on funding early-stage, impact-driven startups, announced that Houston will be its next market expansion. Founded in 2016, the organization expanded to Dallas two years ago. Now, SWAN is hitting the Bayou City and is actively looking for potential angel investors to join its network.

"Houston is the logical place for us to go because a lot of our deep expertise we developed is grounded around life science, health and wellness, and environmental," Bob Bridge, executive director of SWAN, tells InnovationMap. "There's a lot of people in Houston in the spaces where we've spent most of our time and money."

SWAN, originally founded as the Southwest Angel Network, has grown from several investors to over 80 across Texas. The investors, who meet virtually, range from former entrepreneurs, seasoned investors, and first time angels.

Valerie Tompson, who's serving as the Houston market lead, is an example of someone who was drawn to SWAN's mission, even though she had never invested in startups before.

"I was intrigued by the idea of being able to invest in companies that are making a difference in the world — and it's not a charitable donation," she says, explaining that joining a network allowed for her to learn the ropes and understand the process.

Bridge says they are looking to add 20 Houston investors over the next year. He says they are also interested in adding on volunteer analysts to help in the diligence work of the group. Whether you're a frequent investor or just interested in learning more, SWAN's door is open.

"We encourage new angels not to invest at first — go with us for a ride for six months, learn how we think about companies, see a bunch of companies pitch," Bridge says. "Once they start to get the comfort level up, then they can start making investors. We're very much about helping new angels get comfortable."

Currently, SWAN has two Houston startups — Scriptly Rx and Eisana — in its investment portfolio. In addition to the investor network, SWAN, a nonprofit organization, also has its SWAN Impact Philanthropic Fund that also invests in impact-driven businesses.

SWAN is hosting an event at the Ion on Wednesday, May 31, at 6 pm to celebrate its new Houston expansion, as well as to host a panel discussing impact investing. The event is free to attend, and registration is open.

Valerie Tompson, Houston chapter lead, and Bob Bridge, executive director, will be at the May 31 event. Photos courtesy of SWAN