Houston-based Avance Biosciences' new Next-Generation Sequencing Center of Excellence will pursue breakthroughs in biologics, cell therapy and gene therapy. Photo via Getty Images.

Houston-based Avance Biosciences has launched the Next-Generation Sequencing Center of Excellence, designed to enhance the company’s sequencing capabilities for drug development. Specifically, the facility at the company’s main campus in Northwest Houston will pursue breakthroughs in biologics, cell therapy and gene therapy.

In the drug industry, sequencing refers to studying nucleotides in DNA and RNA molecules. Nucleotides are the building blocks of DNA and RNA.

“This is a major milestone for Avance Biosciences as we continue to support the evolving needs of biologics and cell and gene therapy developers,” Xuening “James” Huang, co-founder, CEO and chief technology officer of Avance, said in a news release. “By consolidating state-of-the-art sequencing platforms and scientific talent, we’ve created a highly capable organization ready to solve complex genomic challenges with precision and compliance.”

In 2013, Avance rolled out next-generation sequencing (NGS) that complies with federal guidelines. Since then, Avance “has remained at the forefront of regulated sequencing services,” the company said. “The launch of the (new center) strengthens the company’s ability to deliver accurate, reproducible, and regulatory-aligned sequencing data across a wide array of therapeutic modalities.”

Cal Froberg, senior vice president of sales and marketing at Avance, said pharmaceutical and biotech clients trust the company’s technical capabilities and regulatory compliance.

“With the ever-changing global landscape and increasing scrutiny around international sample shipments, conducting advanced, cost-effective NGS testing domestically is now more feasible than ever,” Froberg said. “Our clients have confidence that their samples will remain in the U.S.”

Avance, founded in 2010, plans to hold an open house at the new facility in September to showcase its capabilities, technology, talent, and services. The company’s services include sequencing, molecular biology, cell-based testing, and bioanalytical testing.
Baylor College of Medicine, Texas A&M and University of Houston researchers have designed SPACe, a new open-source image analysis platform. Photo via Getty Images

Texas universities develop innovative open-source platform for cell analysis

picture this

What do labs do when faced with large amounts of imaging data? Powerful cloud computing systems have long been the answer to that question, but a new riposte comes from SPACe.

That’s the name of a new open-source image analysis platform designed by researchers at Baylor College of Medicine, Texas A&M University and the University of Houston.

SPACe, or Swift Phenotypic Analysis of Cells, was created to be used on standard computers that even small labs can access, meaning cellular analysis using images produced through cell painting has a lower barrier to entry than ever before.

“The pharmaceutical industry has been accustomed to simplifying complex data into single metrics. This platform allows us to shift away from that approach and instead capture the full diversity of cellular responses, providing richer, more informative data that can reveal new avenues for drug development,” Michael Mancini, professor of molecular and cellular biology and director of the Gulf Coast Consortium Center for Advanced Microscopy and Image Informatics co-located at Baylor College of Medicine and TAMU Institute for Bioscience and Technology.

SPACe is not only accessible because of its less substantial computational needs. Because the platform is open-source, it’s available to anyone who needs it. And it can be used by academic and pharmaceutical researchers alike.

“The platform allows for the identification of non-toxic effects of drugs, such as alterations in cell shape or effects on specific organelles, which are often overlooked by traditional assays that focus largely on cell viability,” says Fabio Stossi, currently a senior scientist with St. Jude Children’s Research Hospital, the lead author who was at Baylor during the development of SPACe.

The platform is a better means than ever of analyzing thousands of individual cells through automated imaging platforms, thereby better capturing the variability of biological processes. Through that, SPACe allows scientists an enhanced understanding of the interactions between drugs and cells, and does it on standard computers, translating to scientists performing large-scale drug screenings with greater ease.

"This tool could be a game-changer in how we understand cellular biology and discover new drugs. By capturing the full complexity of cellular responses, we are opening new doors for drug discovery that go beyond toxicity,” says Stossi.

And the fact that it’s open-source allows scientists to access SPACe for free right now. Researchers interested in using the platform can access it through Github at github.com/dlabate/SPACe. This early version could already make waves in research, but the team also plans to continually improve their product with the help of collaborations with other institutions.

Texas Medical Center Innovation won a Prix Galien Award, which has been described as being comparable to the Nobel Prize for the life science community. Photo by Natalie Harms/InnovationMap

Houston's Texas Medical Center wins prestigious global award recognizing leaders in life science innovation

new bling

Last month, a global organization honored innovation leaders in life sciences, and the Texas Medical Center was among the recipients of the prestigious awards program.

The 18th annual Prix Galien Awards Gala awarded TMC Innovation with the win in the "Incubators, Accelerators and Equity" category. The Galien Foundation created the awards program in 1970 in honor of Galien, the father of medical science and modern pharmacology. Alongside TMC, the other winners represented biotech, digital health, startups, and more.

"We are super proud of this distinction," Tom Luby, director of TMC Innovation says at Envision 2024 last month, crediting the TMCi team and TMC leadership for the award. "We lean on a lot of advisers and experts — people who volunteer their time to work with startups. Without (them), we would not have been successful."

Luby explains that a Prix Galien Award holds a Nobel Prize level of significance for the community.

TMCi was named a finalist in August, and competed against programs from Cedars-Sinai, Mayo Foundation for Medical Education and Research, TechConnect, and more.

"The Awards Committee is honored to witness the exceptional dedication and creativity of our nominees as they turn visionary ideas into transformative solutions for patients worldwide," says Michael Rosenblatt, chair of the Prix Galien USA Awards Committee, in a news release. "Their unwavering commitment to advancing patient care is truly commendable, and we are honored to celebrate their outstanding contributions to global health."

The award is displayed at TMC Innovation's office, located in the medical center at 2450 Holcombe Blvd.

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston biotech company expands leadership as it commercializes sustainable products

joining the team

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos.

Parachin will lead the Cemvita team that’s developing technology for production of bio-manufactured oil.

“It’s a fantastic moment, as we’re poised to take our prototyping to the next level, and all under the innovative direction of our co-founder Tara Karimi,” Parachin says in a news release. “We will be bringing something truly remarkable to market and ensuring it’s cost-effective.”

Moji Karimi, co-founder and CEO of Cemvita, says the hiring of Parachin represents “the natural next step” toward commercializing the startup’s carbon-to-oil process.

“Her background prepared her to bring the best out of the scientists at the inflection point of commercialization — really bringing things to life,” says Moji Karimi, Tara’s brother.

Parachin joins Garcia on Cemvita’s executive team.

Before being promoted to vice president of commercialization, Garcia was the startup’s commercial director and business development manager. He has a background in engineering and business development.

Founded in 2017, Cemvita recently announced a breakthrough that enables production of large quantities of oil derived from carbon waste.

In 2023, United Airlines agreed to buy up to one billion gallons of sustainable aviation fuel from Cemvita’s first full-scale plant over the course of 20 years.

Cemvita’s investors include the UAV Sustainable Flight Fund, an investment arm of Chicago-based United; Oxy Low Carbon Ventures, an investment arm of Houston-based energy company Occidental Petroleum; and Japanese equipment and machinery manufacturer Mitsubishi Heavy Industries.

------

This article originally ran on EnergyCapital.

Biostate AI has emerged from stealth this week — with $4 million and a mission to design AI products to predict human and animal health changes. Photo via Getty Images

New health-focused generative AI company emerges from stealth with Houston office, $4M in funding

eyes on ai

A new scalable biodata foundry startup has emerged from stealth with $4 million in investment funding and two new health care artificial intelligence tools. The company is co-located in Houston and Palo Alto, California.

Biostate AI was co-founded by former Rice Professor David Zhang, who serves as the company's CEO, in 2023. With the launch, the company announced two service products: Total RNA sequencing and Copilot for RNAseq data analysis, Biostate reveals in a press release.

"The successful training of any AI well requires large quantities of relevant and high-quality data," Zhang says in the release. "Biostate AI has developed the instrumental technologies to facilitate the collection of more biological data at lower costs. We are pleased to offer these capabilities to academic and industry partners and collaborators."

The company has raised more than $4 million in venture funding. Matter Venture Partners led the initial round, with participation from Vision Plus Capital, Catapult VC, and the California Institute of Technology through the Caltech Seed Fund. Additional investors included Dario Amodei, CEO of Anthropic; Joris Poort, CEO of Rescale; Michael Schnall-Levin, CTO of 10X Genomics; and Emily Leproust, CEO of Twist Bioscience.

"AI is the next frontier and AI needs data, and biological data is a lot harder to get than text or images. We are excited about the potential for Biostate's technology to dramatically lower the cost of collecting RNAseq datasets," adds Haomiao Huang, founding partner at Matter Venture Partners, in the release. "As a US company, Biostate's affordable AI-embedded CRO services are much needed today as the supply of preclinical research services shrinks due to geopolitical tensions."

With an ultimate goal of designing AI products to predict human and animal health changes, Biostate AI is looking to partner with academic researchers, hospital biorepositories, and pharma and other biotech companies.

In addition to its two launched products, Biostate AI has filed nine pending patents on its technologies and is collaborating with Twist Bioscience and California Institute of Technology.

With its official launch, Biostate AI also debut OmicsWeb Copilot, a conversational AI that aids biologists in and visualizing data. Using large-language models, the platform provides access to over 1000 unique RNAseq datasets collected by the Biostate team.

"Bioinformatic analysis of RNAseq and other omics data is a highly complex, multi-step process that currently takes many hours of dedicated specialized programming," explains Ashwin Gopinath, co-founder and CTO of Biostate AI, in the release. "As we scaled up our RNAseq data collection in the past year, we started building OmicsWeb Copilot as an internal tool to help our scientists make sense of the data. And then we realized other people may also find this tool useful, so we're opening it up to the general public for free."

Biostate is asking those interested in collaboration to reach out at partnerships@biostate.ai.

San Jacinto College's new Center for Biotechnology at the Generation Park Campus is expected to be completed early next year. Photo courtesy of San Jacinto College

Houston-area college breaks ground on new biotechnology program, launches curriculum

coming soon

San Jacinto College and McCord Development Inc. broke ground on the new Center for Biotechnology at the Generation Park Campus in Northeast Houston.

The 4,000-square-foot, state-of-the-art facility is slated to allow for more hands-on training within simulated environments and will allow students to earn associate of applied science degrees in biomanufacturing technology, as well as credentials for those already in the workforce. It's scheduled to be completed in the first quarter of 2025.

“The Center and the overall components of the Biotechnology program will play a vital role in meeting the growing demand for skilled professionals in the biotechnology sector,” Brenda Hellyer, chancellor of San Jacinto College, says in a statement.

“We are committed to equipping our students with the skills and knowledge necessary for success in the dynamic biopharmaceutical industry," she continues. "Our vision is to not only meet the workforce needs of today but will also shape the future of biotechnology education and training in our region.”

San Jacinto College and McCord Development Inc. celebrated the groundbreaking of the new Center for Biotechnology at the Generation Park Campus in Northeast Houston. Photo courtesy of San Jacinto College

The new Center for Biotechnology curriculum is in partnership with the Ireland-based National Institute for Bioprocessing Research and Training. It is the only NIBRT-licensed training in the Southwest and Southeast region.

At the groundbreaking, San Jacinto College celebrated the ribbon-cutting for the Biomanufacturing Training Program at the South Campus, the first of the college's comprehensive biotechnology offerings.

The Biomanufacturing Training Program will be a customizable two-week hybrid program that combines theoretical teachings with hands-on experience.

“This program is designed to provide a seamless entry into the field for new professionals, with a focus on practical experience and exposure to industry practices,” Christopher Wild, executive director of San Jacinto College Center for Biotechnology, added in a statement.

The new center is part of Generation Park, a 4,300-acre master-planned development in Northeast Houston. In late 2022, San Jac and McCord, which is developing Generation Park, shared that they had signed a memorandum of understanding with the NIBRT to launch the program and center.

At the time, San Jacinto College was slated to be the institute’s sixth global partner and second U.S. partner.

Last summer, McCord also revealed plans for its 45-acre biomanufacturing campus at Generation Park.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

5 Houston scientists named winners of prestigious Hill Prizes 2026

prized research

Five Houston scientists were recognized for their "high-risk, high-reward ideas and innovations" by Lyda Hill Philanthropies and the Texas Academy of Medicine, Engineering, Science and Technology (TAMEST).

The 2026 Hill Prizes provide seed funding to top Texas researchers. This year's prizes were given out in seven categories, including biological sciences, engineering, medicine, physical sciences, public health and technology, and the new artificial intelligence award.

Each recipient’s institution or organization will receive $500,000 in direct funding from Dallas-based Lyda Hill Philanthropies. The organization has also committed to giving at least $1 million in discretionary research funding on an ad hoc basis for highly-ranked applicants who were not selected as recipients.

“It is with great pride that I congratulate this year’s Hill Prizes recipients. Their pioneering spirit and unwavering dedication to innovation are addressing some of the most pressing challenges of our time – from climate resilience and energy sustainability to medical breakthroughs and the future of artificial intelligence,” Lyda Hill, founder of Lyda Hill Philanthropies, said in a news release.

The 2026 Houston-area recipients include:

Biological Sciences: Susan M. Rosenberg, Baylor College of Medicine

Rosenberg and her team are developing ways to fight antibiotic resistance. The team will use the funding to screen a 14,000-compound drug library to identify additional candidates, study their mechanisms and test their ability to boost antibiotic effectiveness in animal models. The goal is to move toward clinical trials, beginning with veterans suffering from recurrent infections.

Medicine: Dr. Raghu Kalluri, The University of Texas MD Anderson Cancer Center

Kalluri is developing eye drops to treat age-related macular degeneration (AMD), the leading cause of vision loss globally. Kalluri will use the funding to accelerate studies and support testing for additional ocular conditions. He was also named to the National Academy of Inventors’ newest class of fellows last month.

Engineering: Naomi J. Halas, Rice University

Co-recipeints: Peter J. A. Nordlander and Hossein Robatjazi, Rice University

Halas and her team are working to advance light-driven technologies for sustainable ammonia synthesis. The team says it will use the funding to improve light-driven catalysts for converting nitrogen into ammonia, refine prototype reactors for practical deployment and partner with industry collaborators to advance larger-scale applications. Halas and Nordlander are co-founders of Syzygy Plasmonics, and Robatjazi serves as vice president of research for the company.

The other Texas-based recipients include:

  • Artificial Intelligence: Kristen Grauman, The University of Texas at Austin
  • Physical Sciences: Karen L. Wooley, Texas A&M University; Co-Recipient: Matthew Stone, Teysha Technologies
  • Public Health: Dr. Elizabeth C. Matsui, The University of Texas at Austin and Baylor College of Medicine
  • Technology: Kurt W. Swogger, Molecular Rebar Design LLC; Co-recipients: Clive Bosnyak, Molecular Rebar Design, and August Krupp, MR Rubber Business and Molecular Rebar Design LLC

Recipients will be recognized Feb. 2 during the TAMEST 2026 Annual Conference in San Antonio. They were determined by a committee of TAMEST members and endorsed by a committee of Texas Nobel and Breakthrough Prize Laureates and approved by the TAMEST Board of Directors.

“On behalf of TAMEST, we are honored to celebrate the 2026 Hill Prizes recipients. These outstanding innovators exemplify the excellence and ambition of Texas science and research,” Ganesh Thakur, TAMEST president and a distinguished professor at the University of Houston, added in the release. “Thanks to the visionary support of Lyda Hill Philanthropies, the Hill Prizes not only recognize transformative work but provide the resources to move bold ideas from the lab to life-changing solutions. We are proud to support their journeys and spotlight Texas as a global hub for scientific leadership.”

Investment bank opens new Houston office focused on energy sector

Investment bank Cohen & Co. Capital Markets has opened a Houston office to serve as the hub of its energy advisory business and has tapped investment banking veteran Rahul Jasuja as the office’s leader.

Jasuja joined Cohen & Co. Capital Markets, a subsidiary of financial services company Cohen & Co., as managing director, and head of energy and energy transition investment banking. Cohen’s capital markets arm closed $44 billion worth of deals last year.

Jasuja previously worked at energy-focused Houston investment bank Mast Capital Advisors, where he was managing director of investment banking. Before Mast Capital, Jasuja was director of energy investment banking in the Houston office of Wells Fargo Securities.

“Meeting rising [energy] demand will require disciplined capital allocation across traditional energy, sustainable fuels, and firm, dispatchable solutions such as nuclear and geothermal,” Jasuja said in a news release. “Houston remains the center of gravity where capital, operating expertise, and execution come together to make that transition investable.”

The Houston office will focus on four energy verticals:

  • Energy systems such as nuclear and geothermal
  • Energy supply chains
  • Energy-transition fuel and technology
  • Traditional energy
“We are making a committed investment in Houston because we believe the infrastructure powering AI, defense, and energy transition — from nuclear to rare-earth technology — represents the next secular cycle of value creation,” Jerry Serowik, head of Cohen & Co. Capital Markets, added in the release.

---

This article originally appeared on EnergyCaptialHTX.com.

MD Anderson makes AI partnership to advance precision oncology

AI Oncology

Few experts will disagree that data-driven medicine is one of the most certain ways forward for our health. However, actually adopting it comes at a steep curve. But what if using the technology were democratized?

This is the question that SOPHiA GENETICS has been seeking to answer since 2011 with its universal AI platform, SOPHiA DDM. The cloud-native system analyzes and interprets complex health care data across technologies and institutions, allowing hospitals and clinicians to gain clinically actionable insights faster and at scale.

The University of Texas MD Anderson Cancer Center has just announced its official collaboration with SOPHiA GENETICS to accelerate breakthroughs in precision oncology. Together, they are developing a novel sequencing oncology test, as well as creating several programs targeted at the research and development of additional technology.

That technology will allow the hospital to develop new ways to chart the growth and changes of tumors in real time, pick the best clinical trials and medications for patients and make genomic testing more reliable. Shashikant Kulkarni, deputy division head for Molecular Pathology, and Dr. J. Bryan, assistant professor, will lead the collaboration on MD Anderson’s end.

“Cancer research has evolved rapidly, and we have more health data available than ever before. Our collaboration with SOPHiA GENETICS reflects how our lab is evolving and integrating advanced analytics and AI to better interpret complex molecular information,” Dr. Donna Hansel, division head of Pathology and Laboratory Medicine at MD Anderson, said in a press release. “This collaboration will expand our ability to translate high-dimensional data into insights that can meaningfully advance research and precision oncology.”

SOPHiA GENETICS is based in Switzerland and France, and has its U.S. offices in Boston.

“This collaboration with MD Anderson amplifies our shared ambition to push the boundaries of what is possible in cancer research,” Dr. Philippe Menu, chief product officer and chief medical officer at SOPHiA GENETICS, added in the release. “With SOPHiA DDM as a unifying analytical layer, we are enabling new discoveries, accelerating breakthroughs in precision oncology and, most importantly, enabling patients around the globe to benefit from these innovations by bringing leading technologies to all geographies quickly and at scale.”