Med tech

Houston biotech company is creating a drug that could fight the coronavirus

Pulmotect, a clinical-stage biotechnology company based in Houston, is testing a drug that could be useful in mitigating the threats of the coronavirus, which is currently been recognized as a global health emergency. Getty Images

A drug being developed by a Houston biopharmaceutical company eventually could help combat what the World Health Organization has proclaimed a global health emergency.

Experiments conducted by clinical-stage biotechnology company Pulmotect Inc. show its PUL-042 inhaled drug has proven effective in protecting mice against two types of coronavirus: severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). Researchers performed those tests at the University of Texas Medical Branch at Galveston.

In the Galveston experiments, a single inhaled dose of PUL-042 protected lab mice from the SARS virus, and it greatly reduced the amount of virus in their lungs after the mice became infected with SARS or MERS.

"With the risks of virulent coronaviruses and other threats increasing, as shown by the recent outbreak in Wuhan that has already spread from China to other countries including the United States, Pulmotect is optimistic that its immune-stimulating technology could be useful in mitigating the threats of current and emerging pathogens and protecting vulnerable populations," says CEO Dr. Colin Broom in a news release.

The ability of PUL-042 to ward off the newest type of coronavirus, 2019-nCoV, hasn't been tested yet. However, the drug eventually could help prevent the new virus from spreading, says Broom, who joined Pulmotect as CEO last fall. A separate study would be required to evaluate PUL-042 in patients exposed to 2019-nCoV, he says.

"PUL-042 has the potential to prevent and treat respiratory complications in many high-risk patient populations, including those where no effective therapies are currently available, as is the case with the current coronavirus outbreak," Brenton Scott, president and chief operating officer of Pulmotect, says in the release.

Since its discovery in late December 2019 in Wuhan, China, nearly 9,800 people around the world were infected with 2019-nCoV as of January 31, The New York Times reported. Of those people, more than 200 died. On January 30, the World Health Organization (WHO) declared the virus outbreak a global health emergency.

No specific treatment or cure for 2019-nCoV virus is available. This virus is among seven known coronaviruses.

Symptoms of the Wuhan coronavirus include fever, cough, and shortness of breath, according to the U.S. Centers for Disease Control and Prevention (CDC). The virus can cause pneumonia, SARS, kidney failure, or even death, the Virginia Department of Health says.

PUL-042 "would be a great tool to have available for future outbreaks and epidemics, in addition to being used more routinely for more common infections," Broom says.

Fighting coronaviruses is a potential byproduct of PUL-042.

Initially, Pulmotect is focusing development of PUL-042 on the prevention and treatment of respiratory complications suffered by cancer patients with suppressed immune systems. Phase 1 clinical trials already have taken place in the U.S., and Phase 2 clinical trials are scheduled for later this year.

A separate trial of PUL-042 is underway in London. There, the drug is being tested on patients with chronic obstructive pulmonary disease (COPD) who are prone to lung infections. COPD is an inflammatory disease that blocks airflow from the lungs. People with COPD face a heightened risk of conditions like heart disease and lung cancer, the Mayo Clinic says.

Broom says PUL-042 is a few years away from being considered for approval by the U.S. Food and Drug Administration (FDA).

To date, Pulmotect has raised more than $28 million in outside funding. Founded in 2007, Pulmotect emerged from Houston's Fannin Innovation Studio, which nurtures early stage companies in the life sciences sector.

Patents for PUL-042, invented by MD Anderson Cancer Center and Texas A&M University, have been issued in nine countries.

Trending News

Building Houston

 
 

Here's what student teams from around the world were invited to compete in the Rice Business Plan Competition. Photo via rice.edu

Rice Alliance for Technology and Entrepreneurship has named the 42 student startup teams that were extended invitations to compete in the 23rd annual Rice Business Plan Competition

The 2023 startup competition will take place on Rice University campus May 11 to 13, and the teams representing 37 universities from six countries will pitch to investors, mentors, and other industry leaders for the chance to win funding and prizes. Last year's RBPC doled out nearly $2 million in investment prizes.

This year, Rice saw its largest number of student startups applying for the RBPC internal qualifier from within campus. The university selected three to move on to compete at RBPC in May — Sygne Solutions, Neurnano Therapeutics, and Tierra Climate, which also received a total of $5,000 in cash prizes to these top three teams.

The 2023 RBPC will focus on five categories: energy, cleantech and sustainability; life science and health care solutions; consumer products and services; hard tech; and digital enterprise.

This invited companies, if they attend, will join the ranks of the 784 teams that previously competed in RBPC and have raised more than $4.6 billion in capital, as well as seen more than 50 successful exits including five IPOs.

The 2023 Rice Business Plan Competition invitees, according to Rice University's news release:

  • Active Surfaces, Massachusetts Institute of Technology
  • Adrigo Insights, Saint Mary’s University (Canada)
  • AirSeal, Washington University in St. Louis
  • Algbio, Yeditepe University (Turkey)
  • Arch Pet Food, University of Chicago
  • Astria Biosciences, University of Pittsburgh
  • Atma Leather, Yale University
  • Atop, UCLA
  • Biome Future, University of Florida
  • BioSens8, Boston University
  • BlueVerse, Texas Tech University
  • Boardible, Northwestern University
  • Boston Quantum, Massachusetts Institute of Technology
  • ceres plant protein cereal, Tulane University
  • Citrimer, University of Michigan
  • Dart Bioscience, University of Oxford (United Kingdom)
  • DetoXyFi, Harvard University
  • E-Sentience, Duke University
  • Edulis Therapeutics, Carnegie Mellon University
  • FluxWorks, Texas A&M University
  • Integrated Molecular Innovations, Michigan Technological University
  • Inzipio, RWTH Aachen University (Germany)
  • LoopX AI, University of Waterloo (Canada)
  • Magnify Biosciences, Carnegie Mellon University
  • MiraHeart, Johns Hopkins University
  • MyLÚA, Cornell University
  • Outmore Living, University of Texas
  • Pathways, Harvard University
  • Pediatrica Therapeutics, University of Arkansas
  • Perseus Materials, Stanford University
  • Pike Robotics, University of Texas
  • Quantanx, Arizona State University
  • Sheza, San Diego State University
  • Skali, Northwestern University
  • Sundial Solar Components, University of Utah
  • Thryft Ship, University of Georgia
  • Tierra Climate, Rice University
  • TrashTrap Sustainability Solutions, Visvesvaraya Technological University (India)
  • Unchained, North Carolina A&T State University
  • Unsmudgeable, Babson College
  • Vivicaly, University of Pennsylvania
  • Zaymo, Brigham Young University

Trending News