Pulmotect, a clinical-stage biotechnology company based in Houston, is testing a drug that could be useful in mitigating the threats of the coronavirus, which is currently been recognized as a global health emergency. Getty Images

A drug being developed by a Houston biopharmaceutical company eventually could help combat what the World Health Organization has proclaimed a global health emergency.

Experiments conducted by clinical-stage biotechnology company Pulmotect Inc. show its PUL-042 inhaled drug has proven effective in protecting mice against two types of coronavirus: severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). Researchers performed those tests at the University of Texas Medical Branch at Galveston.

In the Galveston experiments, a single inhaled dose of PUL-042 protected lab mice from the SARS virus, and it greatly reduced the amount of virus in their lungs after the mice became infected with SARS or MERS.

"With the risks of virulent coronaviruses and other threats increasing, as shown by the recent outbreak in Wuhan that has already spread from China to other countries including the United States, Pulmotect is optimistic that its immune-stimulating technology could be useful in mitigating the threats of current and emerging pathogens and protecting vulnerable populations," says CEO Dr. Colin Broom in a news release.

The ability of PUL-042 to ward off the newest type of coronavirus, 2019-nCoV, hasn't been tested yet. However, the drug eventually could help prevent the new virus from spreading, says Broom, who joined Pulmotect as CEO last fall. A separate study would be required to evaluate PUL-042 in patients exposed to 2019-nCoV, he says.

"PUL-042 has the potential to prevent and treat respiratory complications in many high-risk patient populations, including those where no effective therapies are currently available, as is the case with the current coronavirus outbreak," Brenton Scott, president and chief operating officer of Pulmotect, says in the release.

Since its discovery in late December 2019 in Wuhan, China, nearly 9,800 people around the world were infected with 2019-nCoV as of January 31, The New York Times reported. Of those people, more than 200 died. On January 30, the World Health Organization (WHO) declared the virus outbreak a global health emergency.

No specific treatment or cure for 2019-nCoV virus is available. This virus is among seven known coronaviruses.

Symptoms of the Wuhan coronavirus include fever, cough, and shortness of breath, according to the U.S. Centers for Disease Control and Prevention (CDC). The virus can cause pneumonia, SARS, kidney failure, or even death, the Virginia Department of Health says.

PUL-042 "would be a great tool to have available for future outbreaks and epidemics, in addition to being used more routinely for more common infections," Broom says.

Fighting coronaviruses is a potential byproduct of PUL-042.

Initially, Pulmotect is focusing development of PUL-042 on the prevention and treatment of respiratory complications suffered by cancer patients with suppressed immune systems. Phase 1 clinical trials already have taken place in the U.S., and Phase 2 clinical trials are scheduled for later this year.

A separate trial of PUL-042 is underway in London. There, the drug is being tested on patients with chronic obstructive pulmonary disease (COPD) who are prone to lung infections. COPD is an inflammatory disease that blocks airflow from the lungs. People with COPD face a heightened risk of conditions like heart disease and lung cancer, the Mayo Clinic says.

Broom says PUL-042 is a few years away from being considered for approval by the U.S. Food and Drug Administration (FDA).

To date, Pulmotect has raised more than $28 million in outside funding. Founded in 2007, Pulmotect emerged from Houston's Fannin Innovation Studio, which nurtures early stage companies in the life sciences sector.

Patents for PUL-042, invented by MD Anderson Cancer Center and Texas A&M University, have been issued in nine countries.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University lands $18M to revolutionize lymphatic disease detection

fresh funding

An arm of the U.S. Department of Health and Human Services has awarded $18 million to scientists at Rice University for research that has the potential to revolutionize how lymphatic diseases are detected and help increase survivability.

The lymphatic system is the network of vessels all over the body that help eliminate waste, absorb fat and maintain fluid balance. Diseases in this system are often difficult to detect early due to the small size of the vessels and the invasiveness of biopsy testing. Though survival rates of lymph disease have skyrocketed in the United States over the last five years, it still claims around 200,000 people in the country annually.

Early detection of complex lymphatic anomalies (CLAs) and lymphedema is essential in increasing successful treatment rates. That’s where Rice University’s SynthX Center, directed by Han Xiao and Lei Li, an assistant professor of electrical and computer engineering, comes in.

Aided by researchers from Texas Children’s Hospital, Baylor College of Medicine, the University of Texas at Dallas and the University of Texas Southwestern Medical Center, the center is pioneering two technologies: the Visual Imaging System for Tracing and Analyzing Lymphatics with Photoacoustics (VISTA-LYMPH) and Digital Plasmonic Nanobubble Detection for Protein (DIAMOND-P).

Simply put, VISTA-LYMPH uses photoacoustic tomography (PAT), a combination of light and sound, to more accurately map the tiny vessels of the lymphatic system. The process is more effective than diagnostic tools that use only light or sound, independent of one another. The research award is through the Advanced Research Projects Agency for Health (ARPA-H) Lymphatic Imaging, Genomics and pHenotyping Technologies (LIGHT) program, part of the U.S. HHS, which saw the potential of VISTA-LYMPH in animal tests that produced finely detailed diagnostic maps.

“Thanks to ARPA-H’s award, we will build the most advanced PAT system to image the body’s lymphatic network with unprecedented resolution and speed, enabling earlier and more accurate diagnosis,” Li said in a news release.

Meanwhile, DIAMOND-P could replace the older, less exact immunoassay. It uses laser-heated vapors of plasmonic nanoparticles to detect viruses without having to separate or amplify, and at room temperature, greatly simplifying the process. This is an important part of greater diagnosis because even with VISTA-LYMPH’s greater imaging accuracy, many lymphatic diseases still do not appear. Detecting biological markers is still necessary.

According to Rice, the efforts will help address lymphatic disorders, including Gorham-Stout disease, kaposiform lymphangiomatosis and generalized lymphatic anomaly. They also could help manage conditions associated with lymphatic dysfunction, including cancer metastasis, cardiovascular disease and neurodegeneration.

“By validating VISTA-LYMPH and DIAMOND-P in both preclinical and clinical settings, the team aims to establish a comprehensive diagnostic pipeline for lymphatic diseases and potentially beyond,” Xiao added in the release.

The ARPA-H award funds the project for up to five years.

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.