therapeutics funding

NIH pumps $1.14M into Houston health care institute to develop life-saving cardiatric drug

Dr. Darren G. Woodside (right), Dr. Ronald J. Biediger, and their team at the Texas Heart Institute received a $1.14 million grant from The National Heart, Lung, and Blood Institute to develop a novel, first-in-class drug. Photo via texasheart.org

Atherosclerosis is a prime pathway to heart attack, heart failure, and stroke. In fact, one in every five deaths recorded in 2021 was due to cardiovascular disease, much of which was caused by atherosclerosis. The thickening and hardening of arteries due to plaque buildup causes the blood vessels to narrow and block blood flow. That leads to the chronic inflammation that causes cardiac events due to atherosclerotic plaque rupture or erosion.

But what if we could lower that inflammation and cut those cardiac incidents off at the pass? Last week, The Texas Heart Institute announced that it had received a two-year, $1.14 million grant from The National Heart, Lung, and Blood Institute to develop a novel, first-in-class drug to treat the cardiovascular disease that arises from atherosclerosis.

“Given the sobering mortality statistics associated with heart disease, a novel therapy that could change disease trajectory and delay or prevent events associated with atherosclerotic cardiovascular disease would be a significant improvement to current treatment regimens,” Dr. Darren G. Woodside, vice president for research, senior investigator, and director of the Flow Cytometry and Imaging Core at The THI, says in a press release.

The most common way to prevent an adverse event is through prescribing patients a statin drug, which lowers lipids. There is ample evidence that this isn’t enough to prevent an incident and most current treatments for atherosclerosis are targeted at helping patients only after plaque rupture has already occurred.

The new technology being developed by THI is focused on a new strategy that will suppress white blood cell activation within atherosclerotic plaques before plaque rupture can take place.

Woodside’s co-principal investigator is Dr. Ronald J. Biediger, director of Medicinal Chemistry at THI. Alongside other members of the Molecular Cardiology Research Laboratories at THI, the two doctors are responsible for the technologies that could lead to drug development.

“If successful, our approach would represent a first-in-class therapeutic, as no drugs marketed today take advantage of this specific strategy of targeting integrin signaling through Syk,” says Dr. Woodside, referring to the intracellular protein important to the production of interleukin.

This is just the latest news THI has to celebrate. Earlier this month, the organization received a $32 million donation received a $32 million donation from a patient — the largest charitable donation in its history. Shortly after that news came out, the institute announced a new partnership with the University of Houston Tilman J. Fertitta Family College of Medicine that allows those UH medical students to join a clinical rotation at The Texas Heart Institute. The alliance means valuable insights and experience with both inpatient and outpatient cardiology for UH's future doctors.

Dr. Joseph Rogers, president and CEO of THI, shared on the Houston Innovators Podcast his dedication to THI's 60-year legacy and continuing to find new ways to reach heart health care patients.

"Despite all of the advances, cardiovascular disease is still one of the largest killers of Americans. It actually kills more Americans than all types of cancer combined," Rogers says on the show.


Trending News

 
 

Promoted

A research team housed out of the newly launched Rice Biotech Launch Pad received funding to scale tech that could slash cancer deaths in half. Photo via Rice University

A research funding agency has deployed capital into a team at Rice University that's working to develop a technology that could cut cancer-related deaths in half.

Rice researchers received $45 million from the National Institutes of Health's Advanced Research Projects Agency for Health, or ARPA-H, to scale up development of a sense-and-respond implant technology. Rice bioengineer Omid Veiseh leads the team developing the technology as principal investigator.

“Instead of tethering patients to hospital beds, IV bags and external monitors, we’ll use a minimally invasive procedure to implant a small device that continuously monitors their cancer and adjusts their immunotherapy dose in real time,” he says in a news release. “This kind of ‘closed-loop therapy’ has been used for managing diabetes, where you have a glucose monitor that continuously talks to an insulin pump. But for cancer immunotherapy, it’s revolutionary.”

Joining Veiseh on the 19-person research project named THOR, which stands for “targeted hybrid oncotherapeutic regulation,” is Amir Jazaeri, co-PI and professor of gynecologic oncology at the University of Texas MD Anderson Cancer Center. The device they are developing is called HAMMR, or hybrid advanced molecular manufacturing regulator.

“Cancer cells are continually evolving and adapting to therapy. However, currently available diagnostic tools, including radiologic tests, blood assays and biopsies, provide very infrequent and limited snapshots of this dynamic process," Jazaeri adds. "As a result, today’s therapies treat cancer as if it were a static disease. We believe THOR could transform the status quo by providing real-time data from the tumor environment that can in turn guide more effective and tumor-informed novel therapies.”

With a national team of engineers, physicians, and experts across synthetic biology, materials science, immunology, oncology, and more, the team will receive its funding through the Rice Biotech Launch Pad, a newly launched initiative led by Veiseh that exists to help life-saving medical innovation scale quickly.

"Rice is proud to be the recipient of the second major funding award from the ARPA-H, a new funding agency established last year to support research that catalyzes health breakthroughs," Rice President Reginald DesRoches says. "The research Rice bioengineer Omid Veiseh is doing in leading this team is truly groundbreaking and could potentially save hundreds of thousands of lives each year. This is the type of research that makes a significant impact on the world.”

The initial focus of the technology will be on ovarian cancer, and this funding agreement includes a first-phase clinical trial of HAMMR for the treatment of recurrent ovarian cancer that's expected to take place in the fourth year of THOR’s multi-year project.

“The technology is broadly applicable for peritoneal cancers that affect the pancreas, liver, lungs and other organs,” Veiseh says. “The first clinical trial will focus on refractory recurrent ovarian cancer, and the benefit of that is that we have an ongoing trial for ovarian cancer with our encapsulated cytokine ‘drug factory’ technology. We'll be able to build on that experience. We have already demonstrated a unique model to go from concept to clinical trial within five years, and HAMMR is the next iteration of that approach.”

Trending News

 
 

Promoted