Dr. Darren G. Woodside (right), Dr. Ronald J. Biediger, and their team at the Texas Heart Institute received a $1.14 million grant from The National Heart, Lung, and Blood Institute to develop a novel, first-in-class drug. Photo via texasheart.org

Atherosclerosis is a prime pathway to heart attack, heart failure, and stroke. In fact, one in every five deaths recorded in 2021 was due to cardiovascular disease, much of which was caused by atherosclerosis. The thickening and hardening of arteries due to plaque buildup causes the blood vessels to narrow and block blood flow. That leads to the chronic inflammation that causes cardiac events due to atherosclerotic plaque rupture or erosion.

But what if we could lower that inflammation and cut those cardiac incidents off at the pass? Last week, The Texas Heart Institute announced that it had received a two-year, $1.14 million grant from The National Heart, Lung, and Blood Institute to develop a novel, first-in-class drug to treat the cardiovascular disease that arises from atherosclerosis.

“Given the sobering mortality statistics associated with heart disease, a novel therapy that could change disease trajectory and delay or prevent events associated with atherosclerotic cardiovascular disease would be a significant improvement to current treatment regimens,” Dr. Darren G. Woodside, vice president for research, senior investigator, and director of the Flow Cytometry and Imaging Core at The THI, says in a press release.

The most common way to prevent an adverse event is through prescribing patients a statin drug, which lowers lipids. There is ample evidence that this isn’t enough to prevent an incident and most current treatments for atherosclerosis are targeted at helping patients only after plaque rupture has already occurred.

The new technology being developed by THI is focused on a new strategy that will suppress white blood cell activation within atherosclerotic plaques before plaque rupture can take place.

Woodside’s co-principal investigator is Dr. Ronald J. Biediger, director of Medicinal Chemistry at THI. Alongside other members of the Molecular Cardiology Research Laboratories at THI, the two doctors are responsible for the technologies that could lead to drug development.

“If successful, our approach would represent a first-in-class therapeutic, as no drugs marketed today take advantage of this specific strategy of targeting integrin signaling through Syk,” says Dr. Woodside, referring to the intracellular protein important to the production of interleukin.

This is just the latest news THI has to celebrate. Earlier this month, the organization received a $32 million donation received a $32 million donation from a patient — the largest charitable donation in its history. Shortly after that news came out, the institute announced a new partnership with the University of Houston Tilman J. Fertitta Family College of Medicine that allows those UH medical students to join a clinical rotation at The Texas Heart Institute. The alliance means valuable insights and experience with both inpatient and outpatient cardiology for UH's future doctors.

Dr. Joseph Rogers, president and CEO of THI, shared on the Houston Innovators Podcast his dedication to THI's 60-year legacy and continuing to find new ways to reach heart health care patients.

"Despite all of the advances, cardiovascular disease is still one of the largest killers of Americans. It actually kills more Americans than all types of cancer combined," Rogers says on the show.


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston robotics co. unveils new robot that can handle extreme temperatures

Hot New Robot

Houston- and Boston-based Square Robot Inc.'s newest tank inspection robot is commercially available and certified to operate at extreme temperatures.

The new robot, known as the SR-3HT, can operate from 14°F to 131°F, representing a broader temperature range than previous models in the company's portfolio. According to the company, its previous temperature range reached 32°F to 104°F.

The new robot has received the NEC/CEC Class I Division 2 (C1D2) certification from FM Approvals, allowing it to operate safely in hazardous locations and to perform on-stream inspections of aboveground storage tanks containing products stored at elevated temperatures.

“Our engineering team developed the SR-3HT in response to significant client demand in both the U.S. and international markets. We frequently encounter higher temperatures due to both elevated process temperatures and high ambient temperatures, especially in the hotter regions of the world, such as the Middle East," David Lamont, CEO of Square Robot, said in a news release. "The SR-3HT employs both active and passive cooling technology, greatly expanding our operating envelope. A great job done (again) by our engineers delivering world-leading technology in record time.”

The company's SR-3 submersible robot and Side Launcher received certifications earlier this year. They became commercially available in 2023, after completing initial milestone testing in partnership with ExxonMobil, according to Square Robot.

The company closed a $13 million series B round in December, which it said it would put toward international expansion in Europe and the Middle East.

Square Robot launched its Houston office in 2019. Its autonomous, submersible robots are used for storage tank inspections and eliminate the need for humans to enter dangerous and toxic environments.

---

This article originally appeared on EnergyCapitalHTX.com.

Houston's Ion District to expand with new research and tech space, The Arc

coming soon

Houston's Ion District is set to expand with the addition of a nearly 200,000-square-foot research and technology facility, The Arc at the Ion District.

Rice Real Estate Company and Lincoln Property Company are expected to break ground on the state-of-the-art facility in Q2 2026 with a completion target set for Q1 2028, according to a news release.

Rice University, the new facility's lead tenant, will occupy almost 30,000 square feet of office and lab space in The Arc, which will share a plaza with the Ion and is intended to "extend the district’s success as a hub for innovative ideas and collaboration." Rice research at The Arc will focus on energy, artificial intelligence, data science, robotics and computational engineering, according to the release.

“The Arc will offer Rice the opportunity to deepen its commitment to fostering world-changing innovation by bringing our leading minds and breakthrough discoveries into direct engagement with Houston’s thriving entrepreneurial ecosystem,” Rice President Reginald DesRoches said in the release. “Working side by side with industry experts and actual end users at the Ion District uniquely positions our faculty and students to form partnerships and collaborations that might not be possible elsewhere.”

Developers of the project are targeting LEED Gold certification by incorporating smart building automation and energy-saving features into The Arc's design. Tenants will have the opportunity to lease flexible floor plans ranging from 28,000 to 31,000 square feet with 15-foot-high ceilings. The property will also feature a gym, an amenity lounge, conference and meeting spaces, outdoor plazas, underground parking and on-site retail and dining.

Preleasing has begun for organizations interested in joining Rice in the building.

“The Arc at the Ion District will be more than a building—it will be a catalyst for the partnerships, innovations and discoveries that will define Houston’s future in science and technology,” Ken Jett, president of Rice Real Estate Company, added in the release. “By expanding our urban innovation ecosystem, The Arc will attract leading organizations and talent to Houston, further strengthening our city’s position as a hub for scientific and entrepreneurial progress.”

Intel Corp. and Rice University sign research access agreement

innovation access

Rice University’s Office of Technology Transfer has signed a subscription agreement with California-based Intel Corp., giving the global company access to Rice’s research portfolio and the opportunity to license select patented innovations.

“By partnering with Intel, we are creating opportunities for our research to make a tangible impact in the technology sector,” Patricia Stepp, assistant vice president for technology transfer, said in a news release.

Intel will pay Rice an annual subscription fee to secure the option to evaluate specified Rice-patented technologies, according to the agreement. If Intel chooses to exercise its option rights, it can obtain a license for each selected technology at a fee.

Rice has been a hub for innovation and technology with initiatives like the Rice Biotech Launch Pad, an accelerator focused on expediting the translation of the university’s health and medical technology; RBL LLC, a biotech venture studio in the Texas Medical Center’s Helix Park dedicated to commercializing lifesaving medical technologies from the Launch Pad; and Rice Nexus, an AI-focused "innovation factory" at the Ion.

The university has also inked partnerships with other tech giants in recent months. Rice's OpenStax, a provider of affordable instructional technologies and one of the world’s largest publishers of open educational resources, partnered with Microsoft this summer. Google Public Sector has also teamed up with Rice to launch the Rice AI Venture Accelerator, or RAVA.

“This agreement exemplifies Rice University’s dedication to fostering innovation and accelerating the commercialization of groundbreaking research,” Stepp added in the news release.