Dr. Darren G. Woodside (right), Dr. Ronald J. Biediger, and their team at the Texas Heart Institute received a $1.14 million grant from The National Heart, Lung, and Blood Institute to develop a novel, first-in-class drug. Photo via texasheart.org

Atherosclerosis is a prime pathway to heart attack, heart failure, and stroke. In fact, one in every five deaths recorded in 2021 was due to cardiovascular disease, much of which was caused by atherosclerosis. The thickening and hardening of arteries due to plaque buildup causes the blood vessels to narrow and block blood flow. That leads to the chronic inflammation that causes cardiac events due to atherosclerotic plaque rupture or erosion.

But what if we could lower that inflammation and cut those cardiac incidents off at the pass? Last week, The Texas Heart Institute announced that it had received a two-year, $1.14 million grant from The National Heart, Lung, and Blood Institute to develop a novel, first-in-class drug to treat the cardiovascular disease that arises from atherosclerosis.

“Given the sobering mortality statistics associated with heart disease, a novel therapy that could change disease trajectory and delay or prevent events associated with atherosclerotic cardiovascular disease would be a significant improvement to current treatment regimens,” Dr. Darren G. Woodside, vice president for research, senior investigator, and director of the Flow Cytometry and Imaging Core at The THI, says in a press release.

The most common way to prevent an adverse event is through prescribing patients a statin drug, which lowers lipids. There is ample evidence that this isn’t enough to prevent an incident and most current treatments for atherosclerosis are targeted at helping patients only after plaque rupture has already occurred.

The new technology being developed by THI is focused on a new strategy that will suppress white blood cell activation within atherosclerotic plaques before plaque rupture can take place.

Woodside’s co-principal investigator is Dr. Ronald J. Biediger, director of Medicinal Chemistry at THI. Alongside other members of the Molecular Cardiology Research Laboratories at THI, the two doctors are responsible for the technologies that could lead to drug development.

“If successful, our approach would represent a first-in-class therapeutic, as no drugs marketed today take advantage of this specific strategy of targeting integrin signaling through Syk,” says Dr. Woodside, referring to the intracellular protein important to the production of interleukin.

This is just the latest news THI has to celebrate. Earlier this month, the organization received a $32 million donation received a $32 million donation from a patient — the largest charitable donation in its history. Shortly after that news came out, the institute announced a new partnership with the University of Houston Tilman J. Fertitta Family College of Medicine that allows those UH medical students to join a clinical rotation at The Texas Heart Institute. The alliance means valuable insights and experience with both inpatient and outpatient cardiology for UH's future doctors.

Dr. Joseph Rogers, president and CEO of THI, shared on the Houston Innovators Podcast his dedication to THI's 60-year legacy and continuing to find new ways to reach heart health care patients.

"Despite all of the advances, cardiovascular disease is still one of the largest killers of Americans. It actually kills more Americans than all types of cancer combined," Rogers says on the show.


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University lands $18M to revolutionize lymphatic disease detection

fresh funding

An arm of the U.S. Department of Health and Human Services has awarded $18 million to scientists at Rice University for research that has the potential to revolutionize how lymphatic diseases are detected and help increase survivability.

The lymphatic system is the network of vessels all over the body that help eliminate waste, absorb fat and maintain fluid balance. Diseases in this system are often difficult to detect early due to the small size of the vessels and the invasiveness of biopsy testing. Though survival rates of lymph disease have skyrocketed in the United States over the last five years, it still claims around 200,000 people in the country annually.

Early detection of complex lymphatic anomalies (CLAs) and lymphedema is essential in increasing successful treatment rates. That’s where Rice University’s SynthX Center, directed by Han Xiao and Lei Li, an assistant professor of electrical and computer engineering, comes in.

Aided by researchers from Texas Children’s Hospital, Baylor College of Medicine, the University of Texas at Dallas and the University of Texas Southwestern Medical Center, the center is pioneering two technologies: the Visual Imaging System for Tracing and Analyzing Lymphatics with Photoacoustics (VISTA-LYMPH) and Digital Plasmonic Nanobubble Detection for Protein (DIAMOND-P).

Simply put, VISTA-LYMPH uses photoacoustic tomography (PAT), a combination of light and sound, to more accurately map the tiny vessels of the lymphatic system. The process is more effective than diagnostic tools that use only light or sound, independent of one another. The research award is through the Advanced Research Projects Agency for Health (ARPA-H) Lymphatic Imaging, Genomics and pHenotyping Technologies (LIGHT) program, part of the U.S. HHS, which saw the potential of VISTA-LYMPH in animal tests that produced finely detailed diagnostic maps.

“Thanks to ARPA-H’s award, we will build the most advanced PAT system to image the body’s lymphatic network with unprecedented resolution and speed, enabling earlier and more accurate diagnosis,” Li said in a news release.

Meanwhile, DIAMOND-P could replace the older, less exact immunoassay. It uses laser-heated vapors of plasmonic nanoparticles to detect viruses without having to separate or amplify, and at room temperature, greatly simplifying the process. This is an important part of greater diagnosis because even with VISTA-LYMPH’s greater imaging accuracy, many lymphatic diseases still do not appear. Detecting biological markers is still necessary.

According to Rice, the efforts will help address lymphatic disorders, including Gorham-Stout disease, kaposiform lymphangiomatosis and generalized lymphatic anomaly. They also could help manage conditions associated with lymphatic dysfunction, including cancer metastasis, cardiovascular disease and neurodegeneration.

“By validating VISTA-LYMPH and DIAMOND-P in both preclinical and clinical settings, the team aims to establish a comprehensive diagnostic pipeline for lymphatic diseases and potentially beyond,” Xiao added in the release.

The ARPA-H award funds the project for up to five years.

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.