BCM's Center for Precision Medicine Models has received funding that will allow it to study more complex diseases. Photo via Getty Images

Baylor College of Medicine’s Center for Precision Medicine Models received a $10 million, five-year grant from the National Institutes of Health last month that will allow it to continue its work studying rare genetic diseases.

The Center for Precision Medicine Models creates customized cell, fly and mouse models that mimic specific genetic variations found in patients, helping scientists to better understand how genetic changes cause disease and explore potential treatments.

The center was originally funded by an NIH grant, and its models have contributed to the discovery of several new rare disease genes and new symptoms caused by known disease genes. It hosts an online portal that allows physicians, families and advocacy groups to nominate genetic variants or rare diseases that need further investigation or new treatments.

Since its founding in 2020, it has received 156 disease/variant nominations, accepted 63 for modeling and produced more than 200 precision models, according to Baylor.

The center plans to use the latest round of funding to bring together more experts in rare disease research, animal modeling and bioinformatics, and to expand its focus and model more complex diseases.

Dr. Jason Heaney, associate professor in the Department of Molecular and Human Genetics at BCM, serves as the lead principal investigator of the center.

“The Department of Molecular and Human Genetics is uniquely equipped to bring together the diverse expertise needed to connect clinical human genetics, animal research and advanced bioinformatics tools,” Heaney added in the release. “This integration allows us to drive personalized medicine forward using precision animal models and to turn those discoveries into better care for patients.”

The Science & Community Impacts Mapping Project identified 37 cancelled or frozen NIH grants for Houston institutions. Photo via Unsplash.

Houston health orgs lost $58M in canceled, stalled NIH grants, new report shows

research cuts

Seven institutions in the Houston area have lost nearly $60 million in grants from the National Institutes of Health (NIH) that were aimed at funding health research.

The Science & Community Impacts Mapping Project identified 37 cancelled or frozen NIH grants worth $58.7 million that were awarded to seven Houston-area institutions. The University of Texas Medical Branch at Galveston suffered the biggest loss — five grants totaling nearly $44.8 million.

The Harvard University T.H. Chan School of Public Health reported in May that over the previous several months across the U.S., the federal government had terminated roughly 2,100 NIH research grants worth around $9.5 billion.

In August, the U.S. Supreme Court derailed researchers’ efforts to reinstate almost $2 billion in research grants issued by NIH, according to Nature.com.

“Make no mistake: This was a decision critical to the future of the nation, and the Supreme Court made the wrong choice. History will look upon these mass National Institutes of Health (NIH) research grant terminations with shame,” the American Association of Medical Colleges said in a statement. “The Court has turned a blind eye to this grievous attack on science and medicine, and we call upon Congress to take action to restore the rule of law at NIH.”

Texas health researchers rely heavily on NIH grants and contracts. During the federal government’s 2024 budget year, NIH awarded $1.9 billion in grants and contracts that directly supported 30,553 jobs and more than $6.1 billion in economic activity in Texas, according to the United for Medical Research coalition.

Here’s a rundown of the cancelled and frozen NIH grants in the Houston area.

  • University of Texas Medical Branch at Galveston: Five cancelled or frozen grants, totalling approximately $44.8 million in funding lost.
  • Baylor College of Medicine: 17 grants cancelled or frozen, totalling approximately $8 million in funding lost
  • University of Houston. Five cancelled or frozen grants, totalling approximately $3.7 million in funding lost
  • University of Texas Health Science Center Houston: Five grants cancelled or frozen, totaling approximately $1.1 million in funding lost.
  • University of Texas MD Anderson Cancer Center: Two grants cancelled or frozen, totalling $831,581 in funding
  • Rice University. Two grants cancelled or frozen, totaling $254,645 in funding lost
  • Prairie View A&M University: One grant cancelled or frozen, totalling $31,771 in funding lost
Dr. Darren G. Woodside (right), Dr. Ronald J. Biediger, and their team at the Texas Heart Institute received a $1.14 million grant from The National Heart, Lung, and Blood Institute to develop a novel, first-in-class drug. Photo via texasheart.org

NIH pumps $1.14M into Houston health care institute to develop life-saving cardiatric drug

therapeutics funding

Atherosclerosis is a prime pathway to heart attack, heart failure, and stroke. In fact, one in every five deaths recorded in 2021 was due to cardiovascular disease, much of which was caused by atherosclerosis. The thickening and hardening of arteries due to plaque buildup causes the blood vessels to narrow and block blood flow. That leads to the chronic inflammation that causes cardiac events due to atherosclerotic plaque rupture or erosion.

But what if we could lower that inflammation and cut those cardiac incidents off at the pass? Last week, The Texas Heart Institute announced that it had received a two-year, $1.14 million grant from The National Heart, Lung, and Blood Institute to develop a novel, first-in-class drug to treat the cardiovascular disease that arises from atherosclerosis.

“Given the sobering mortality statistics associated with heart disease, a novel therapy that could change disease trajectory and delay or prevent events associated with atherosclerotic cardiovascular disease would be a significant improvement to current treatment regimens,” Dr. Darren G. Woodside, vice president for research, senior investigator, and director of the Flow Cytometry and Imaging Core at The THI, says in a press release.

The most common way to prevent an adverse event is through prescribing patients a statin drug, which lowers lipids. There is ample evidence that this isn’t enough to prevent an incident and most current treatments for atherosclerosis are targeted at helping patients only after plaque rupture has already occurred.

The new technology being developed by THI is focused on a new strategy that will suppress white blood cell activation within atherosclerotic plaques before plaque rupture can take place.

Woodside’s co-principal investigator is Dr. Ronald J. Biediger, director of Medicinal Chemistry at THI. Alongside other members of the Molecular Cardiology Research Laboratories at THI, the two doctors are responsible for the technologies that could lead to drug development.

“If successful, our approach would represent a first-in-class therapeutic, as no drugs marketed today take advantage of this specific strategy of targeting integrin signaling through Syk,” says Dr. Woodside, referring to the intracellular protein important to the production of interleukin.

This is just the latest news THI has to celebrate. Earlier this month, the organization received a $32 million donation received a $32 million donation from a patient — the largest charitable donation in its history. Shortly after that news came out, the institute announced a new partnership with the University of Houston Tilman J. Fertitta Family College of Medicine that allows those UH medical students to join a clinical rotation at The Texas Heart Institute. The alliance means valuable insights and experience with both inpatient and outpatient cardiology for UH's future doctors.

Dr. Joseph Rogers, president and CEO of THI, shared on the Houston Innovators Podcast his dedication to THI's 60-year legacy and continuing to find new ways to reach heart health care patients.

"Despite all of the advances, cardiovascular disease is still one of the largest killers of Americans. It actually kills more Americans than all types of cancer combined," Rogers says on the show.


7 Hills Pharma, an innovative immunotherapy company, was awarded a $13.5 million grant from the Cancer Prevention and Research Institute of Texas. Photo via Getty Images

Houston immunotherapy company to use $13.5M grant to further develop cancer treatments

future of pharma

Between Bangalore and Chennai in the Indian state of Andhra Pradesh, you’ll find the town of Tirupati. It’s home to seven peaks that host a Hindu temple complex devoted to a form of Vishnu, Venkateshvara. It is also the region from which Upendra Marathi originally hails. It’s where his father, and many other family members, attended medical school.

“My father’s first job was to take care of the pilgrims,” recalls Marathi.

It's only natural that his groundbreaking Houston company would be named 7 Hills Pharma.

“That sort of selflessness and giving back, I wanted to embody it in the name of the company,” Marathi says.

Now, 7 Hills Pharma is announcing that last month, it was awarded a $13.5 million grant from the Cancer Prevention and Research Institute of Texas (CPRIT). That’s on top of more than $13 million in NIH grants, making the company the second largest recipient of SBIR/STTR grants in Texas.

Launched in 2016, 7 Hills Pharma is working to develop drugs that can overcome the all-too-common problem of immunotherapy resistance. Thanks to the Nobel Prize-winning work of Jim Allison in the realm of immuno-oncology, the field was “very hot” at the time, says Marathi, particularly in Houston.

So what has 7 Hills developed? Oral small molecules that activate integrins — the receptors that allow cells to bind to one another — allowing for the cell-to-cell interactions that create a successful immune response to immune checkpoint inhibitors such as Yervoy. In other words, they have created capsules that increase the effectiveness of drugs that allow the body’s own immune response to fight cancers.

But that’s not all. Tests have shown that the same discovery, called alintegimod, can also augment the effectiveness of vaccines. The pill, which co-founder and co-inventor Peter Vanderslice calls “a beautiful way to amplify the vaccines,” can potentially be applied to anything from influenza to coronavirus.

Their greatest challenge, says Vanderslice, is the very fact that the technology is so novel.

“Most large pharmas are very risk averse,” he explains. “They only want to do ‘me-too’ kinds of drugs.”

7 Hills Pharma is the third company Marathi, both a PhD and an MBA, has helped to found based on technology he co-invented. Vanderslice is director of the molecular cardiology research laboratories at The Texas Heart Institute.

“It’s very much a homegrown company,” Marathi says.

And a small one, at least for now. Working out of JLabs@TMC, the full-time team is currently just Marathi and Siddhartha De, the senior director of development. Marathi convinced De to transplant himself and his family from India for the purpose of assisting 7 Hills with preparing its drugs for clinical readiness.

The CPRIT funds will allow 7 Hills Pharma to hire several long-time team members full-time and with benefits.

“The bringing of talent and bringing of technology to TMC and what was born at Texas Heart Institute is rather remarkable,” says Rob Bent, the company’s director of operations.

The next step for 7 Hills Pharma is a Phase Ib/IIa clinical trial in patients with treatment-resistant solid tumors. And the team just finalized the deck that will help raise another $10 million to $250 million in the company’s series A. And hopefully sooner rather than later, a new set of medical pilgrims will be thanking 7 Hill Pharma for its care.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH receives $2.6M gift to support opioid addiction research and treatment

drug research

The estate of Dr. William A. Gibson has granted the University of Houston a $2.6 million gift to support and expand its opioid addiction research, including the development of a fentanyl vaccine that could block the drug's ability to enter the brain.

The gift builds upon a previous donation from the Gibson estate that honored the scientist’s late son Michael, who died from drug addiction in 2019. The original donation established the Michael C. Gibson Addiction Research Program in UH's department of psychology. The latest donation will establish the Michael Conner Gibson Endowed Professorship in Psychology and the Michael Conner Gibson Research Endowment in the College of Liberal Arts and Social Sciences.

“This incredibly generous gift will accelerate UH’s addiction research program and advance new approaches to treatment,” Daniel O’Connor, dean of the College of Liberal Arts and Social Sciences, said in a news release.

The Michael C. Gibson Addiction Research Program is led by UH professor of psychology Therese Kosten and Colin Haile, a founding member of the UH Drug Discovery Institute. Currently, the program produces high-profile drug research, including the fentanyl vaccine.

According to UH, the vaccine can eliminate the drug’s “high” and could have major implications for the nation’s opioid epidemic, as research reveals Opioid Use Disorder (OUD) is treatable.

The endowed professorship is combined with a one-to-one match from the Aspire Fund Challenge, a $50 million grant program established in 2019 by an anonymous donor. UH says the program has helped the university increase its number of endowed chairs and professorships, including this new position in the department of psychology.

“Our future discoveries will forever honor the memory of Michael Conner Gibson and the Gibson family,” O’Connor added in the release. “And I expect that the work supported by these endowments will eventually save many thousands of lives.”

CenterPoint and partners launch AI initiative to stabilize the power grid

AI infrastructure

Houston-based utility company CenterPoint Energy is one of the founding partners of a new AI infrastructure initiative called Chain Reaction.

Software companies NVIDIA and Palantir have joined CenterPoint in forming Chain Reaction, which is aimed at speeding up AI buildouts for energy producers and distributors, data centers and infrastructure builders. Among the initiative’s goals are to stabilize and expand the power grid to meet growing demand from data centers, and to design and develop large data centers that can support AI activity.

“The energy infrastructure buildout is the industrial challenge of our generation,” Tristan Gruska, Palantir’s head of energy and infrastructure, says in a news release. “But the software that the sector relies on was not built for this moment. We have spent years quietly deploying systems that keep power plants running and grids reliable. Chain Reaction is the result of building from the ground up for the demands of AI.”

CenterPoint serves about 7 million customers in Texas, Indiana, Minnesota and Ohio. After Hurricane Beryl struck Houston in July 2024, CenterPoint committed to building a resilient power grid for the region and chose Palantir as its “software backbone.”

“Never before have technology and energy been so intertwined in determining the future course of American innovation, commercial growth, and economic security,” Jason Wells, chairman, president and CEO of CenterPoint, added in the release.

In November, the utility company got the go-ahead from the Public Utility Commission of Texas for a $2.9 billion upgrade of its Houston-area power grid. CenterPoint serves 2.9 million customers in a 12-county territory anchored by Houston.

A month earlier, CenterPoint launched a $65 billion, 10-year capital improvement plan to support rising demand for power across all of its service territories.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.